辣鸡elijahqi

细节决定成败 心态决定一切

luogu1313

http://www.elijahqi.win/archives/835
题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3
说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

当作模拟考试的一道题,不会二项式定理qwq 但是推导出来发现和二项式定理差不多hh
杨辉三角打表然后推导的

在多项式(by+ax)^k中,某一项(x^n)*(y^m)中m=k-n恒成立
ans=C(k,n)(a^n)(b^(k-n)),其中C表示组合数

#include<cstdio>
#define mod 10007
int map[1100][1100],a,b,k,n,m;
void makestable(){
    for (int i=1;i<=k;++i) map[i][1]=1;map[2][2]=2;map[2][3]=1;
    for (int i=3;i<=k;++i){
        for (int j=2;j<=i;++j){
            map[i][j]=(map[i-1][j-1]+map[i-1][j])%mod;
        }
        map[i][i+1]=1;
    }
}
inline int gc(int base,int t){
    int ans=1;
    for (;t;t>>=1,base=(long long)base*base%mod){
        if (t&1) ans=(long long) ans*base%mod;
    }
    return ans;
}
int main(){
    //freopen("1.in","r",stdin);
    scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
    makestable();
    map[3][2];
    long long ans=1;
    ans=ans*gc(a,n)*gc(b,m)*map[k][m-0+1]%mod;
    printf("%lld",ans);
    return 0;
}
阅读更多
版权声明:辣鸡蒟蒻的blog https://blog.csdn.net/elijahqi/article/details/79968721
个人分类: 数学
上一篇hdu3699
下一篇luogu1314聪明的质检员
想对作者说点什么? 我来说一句
关闭
关闭