洛谷 P9847 [ICPC 2021 Nanjing R] Crystalfly

安利一发洛谷博客

原题传送门

你说得对,但是 pjsk 更好玩捏(ena 误入)。

题意简述

每个点上有一些晶蝶,你从根节点( 1 1 1 号节点)开始走,当你到达这个节点的父亲(总不可能先到它的儿子吧……)时,过一段时间晶蝶就会飞走,求你能抓到的晶蝶最大值。

走法

首先肯定不会停住不动吧……

所以最优策略肯定是不断走。

而且时间限制其实是没用的,因为到后面晶蝶都没了你在抓什么……

现在我们考虑走到了 u u u 节点,它的儿子分别是 v 1 , v 2 , ⋯   , v k v_1,v_2,\cdots,v_k v1,v2,,vk。同时我们不考虑以 u u u 的子树以外的晶蝶。

其实就是把 u u u 当作根节点进行观察……

那么 u u u 一共有这么几种走法(注意,往后的“走一步”均代表在一秒的时间内移动):

零:向上走,再走回来

这样肯定是不优的,因为你最后还是会回来,但是一些晶蝶已经飞走了,所以这样走的两步肯定是不划算的,这种情况就不考虑了(所以是第零种)。

一:走进一个儿子 v i v_i vi,继续往下走

这样的话 u u u 的其他儿子肯定是吃不到(就是抓不到晶蝶了,原谅我这个习惯)了。

所以此时就应该把 v i v_i vi 的子树吃完再回退。

二:走到一个儿子 v i v_i vi,再退回来

接着我们就应该走到另外一个儿子了,不然再走到 v i v_i vi 不划算(参考第零种走法)。

那么应该走到哪些孩子呢?

注意到走到另一个孩子,时间已经过去了 3 3 3 秒,所以应该走向 t v j = 3 t_{v_j}=3 tvj=3 的儿子 v j v_j vj(不懂的可以评论问我)。

之后吃掉 v j v_j vj 的子树就好啦!

毕竟再直接回退就没意思了,其他儿子的晶蝶早没了。

如何动态规划?

肯定有人会说:算法标签不都写着嘛,你还有什么好说的。

这种人请跳过这篇题解。

毕竟你上考场又没有标签,所以还是得自己分析的。


众所周知,能够动态规划需要 2 2 2 个条件。

最优子结构

明显,如果每个子树我们都抓到了最多的晶蝶,那么总体来看绝对就是最优解。因为一个节点只会影响直接儿子和兄弟节点,兄弟节点的儿子不会受到影响。

无后效性

每个子树内部怎么抓不影响其他子树,所以我们不需要关心怎么抓的晶蝶。


那么我们已经明确了可以用动态规划,现在就来思考怎么实现吧!

动态规划的实现

我们用三个数组记录状态(你用二维数组我也不拦你):

f i f_i fi 记录 i i i 的子树(不包括 i i i)最多能抓多少晶蝶;

g i g_i gi 记录 i i i 的子树(包括 i i i)最多能抓多少晶蝶;

h i h_i hi 记录 i i i 的子树(包括 i i i)在直接儿子的晶蝶全部飞走的情况下最多能抓到多少晶蝶。

g i g_i gi

明显, g i g_i gi 就比 f i f_i fi 多了一个根节点(指子树范围内)。

所以:
g i = f i + a i g_i=f_i+a_i gi=fi+ai

h i h_i hi

由于儿子的晶蝶都没了,你只要不走下去就不会惊扰到子树里其余的晶蝶。

所以我们把每个儿子的 f f f 加起来就好啦!

我们假设 i i i 的儿子分别是 v 1 , v 2 , ⋯   , v m v_1,v_2,\cdots,v_m v1,v2,,vm,就有:
h i = ∑ k = 1 m f v k + a i h_i=\sum_{k=1}^{m}f_{v_k} + a_i hi=k=1mfvk+ai

f i f_i fi

重点来了!!!

首先如果用第一种走法,只有某个儿子 v j v_j vj 是能被吃到的,因此
f i ′ = max ⁡ j ∈ [ 1 , k ] ( g v j − f v j + ∑ k = 1 m f v k ) f_i'=\max_{j\in[1,k]}(g_{v_j} - f_{v_j} + \sum_{k=1}^{m}f_{v_k}) fi=j[1,k]max(gvjfvj+k=1mfvk)

而如果运用第二种走法,第一个走到的儿子 v j v_j vj 的直接儿子就吃不到了(自己思考一下),也就是 h h h,而第二个走到的儿子 v u v_u vu 可以吃到 g g g,其余只能吃到 f f f

v j v_j vj 怎么选呢?

明显对于任意一个儿子(当然要 t = 3 t=3 t=3),你选了它和没选它,差的只是它自己,再往下的最优还是最优。

所以我们要找的就是 t = 3 t=3 t=3 a a a 最大的儿子。

于是:
f i ′ ′ = max ⁡ j ∈ [ 1 , k ] ( h v j − f v j + ∑ k = 1 m f v k + g v u − f v u ) f''_i=\max_{j\in[1,k]}(h_{v_j} - f_{v_j} + \sum_{k=1}^{m}f_{v_k} + g_{v_u} - f_{v_u}) fi′′=j[1,k]max(hvjfvj+k=1mfvk+gvufvu)
其中 v u v_u vu 就是我们选到的第二个儿子。

综上,就有
f i = max ⁡ ( f i ′ , f i ′ ′ ) f_i=\max(f'_i,f''_i) fi=max(fi,fi′′)

一些小问题(优化)

求和

明显,如果直接求 ∑ k = 1 m f v k \sum_{k=1}^{m}f_{v_k} k=1mfvk,每个点都会作为儿子被访问一遍(不要纠结根节点啦),总共就是 O ( n 2 ) O(n^2) O(n2),不行。

那就预处理呗。搜到某个节点就先处理出来不久好了?

我们用 s s s 记录这个和,即
s = ∑ k = 1 m f v k s=\sum_{k=1}^{m}f_{v_k} s=k=1mfvk
那么就有
g i = f i + a i h i = s + a i f i ′ = max ⁡ j ∈ [ 1 , k ] ( g v j − f v j + s ) f i ′ ′ = max ⁡ j ∈ [ 1 , k ] ( h v j − f v j + s + g v u − f v u ) f i = max ⁡ ( f i ′ , f i ′ ′ ) g_i=f_i+a_i\\ h_i=s + a_i\\ f_i'=\max_{j\in[1,k]}(g_{v_j} - f_{v_j} + s)\\ f''_i=\max_{j\in[1,k]}(h_{v_j} - f_{v_j} + s + g_{v_u} - f_{v_u})\\ f_i=\max(f'_i,f''_i) gi=fi+aihi=s+aifi=j[1,k]max(gvjfvj+s)fi′′=j[1,k]max(hvjfvj+s+gvufvu)fi=max(fi,fi′′)
是不是简便很多?

v u v_u vu 怎么求?

最朴素的做法是每次找一遍最大值,时间复杂度 O ( n 2 ) O(n^2) O(n2),完蛋……

于是我们需要预处理最大值。

但是可能会有冲突( v j = v u v_j=v_u vj=vu)怎么办?那就同时记最大值和次大值(可以相等)就好啦!当然同时记得要记录位置,用 pair<int, int> 就好了。

所以这个也顺利解决了。

g i g_i gi

没错, g i g_i gi 其实是辅助理解用的,完全可以直接替换成 f i + a i f_i+a_i fi+ai

状态转移方程

h i = s + a i f i ′ = max ⁡ j ∈ [ 1 , k ] ( s + a v j ) f i ′ ′ = max ⁡ j ∈ [ 1 , k ] ( h v j − f v j + s + a v j ) f i = max ⁡ ( f i ′ , f i ′ ′ ) h_i=s + a_i\\ f_i'=\max_{j\in[1,k]}(s + a_{v_j})\\ f''_i=\max_{j\in[1,k]}(h_{v_j} - f_{v_j} + s + a_{v_j})\\ f_i=\max(f'_i,f''_i) hi=s+aifi=j[1,k]max(s+avj)fi′′=j[1,k]max(hvjfvj+s+avj)fi=max(fi,fi′′)

AC 代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// 说白了就是不喜欢 #define int long long

const int N = 101000; // 数组不够大,亲人两行泪 qwq
const ll inf = 1ll << 60;

vector<int> e[N];

int n, a[N], t[N];

ll f[N], h[N];

void dfs(int u, int par) {
    ll s = 0;
    int ma = 0;
    for (auto v : e[u]) if (v != par) {
        dfs(v, u);
        s += f[v]; // 统计和
        ma = max(ma, a[v]); // f'
    }

    f[u] = s + ma;
    pair<ll, int> ma1(-inf, 0), ma2(-inf, 0); // 最大值和次大值,第一位是数,第二位是位置

    for (auto v : e[u]) if (v != par && t[v] == 3) {
        pair<ll, int> ma3(a[v], v);
        if (ma2 < ma3) ma2 = ma3;
        if (ma1 < ma2) swap(ma1, ma2); // 更新
    }
    for (auto v : e[u]) if (v != par) {
        ll tmp = s + h[v] - f[v];
        if (v == ma1.second) tmp += ma2.first;
        else tmp += ma1.first;
        f[u] = max(f[u], tmp); // f''
    }
    h[u] = s + a[u]; // h
}

void solve() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        e[i].clear();
    for (int i = 1; i <= n; i++)
        scanf("%d", &a[i]);
    for (int i = 1; i <= n; i++)
        scanf("%d", &t[i]);
    for (int i = 2; i <= n; i++) {
        int u, v;
        scanf("%d%d", &u, &v);
        e[u].push_back(v);
        e[v].push_back(u);
    }
    dfs(1, 0);
    printf("%lld\n", f[1] + a[1]);
}

int main() {
    int T;
    scanf("%d", &T);
    for (; T; T--) {
        solve();
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值