EstherKing
码龄8年
关注
提问 私信
  • 博客:21,416
    21,416
    总访问量
  • 6
    原创
  • 778,339
    排名
  • 19
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-06-23
博客简介:

emma1222的博客

查看详细资料
个人成就
  • 获得17次点赞
  • 内容获得3次评论
  • 获得65次收藏
创作历程
  • 6篇
    2019年
成就勋章
TA的专栏
  • 面试
  • 数据结构
  • 算法
  • 机器学习
    3篇
  • 深度学习
    6篇
  • meta-learning
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Google CNN Quantization: Theory and Implementation

量化方案综述这篇文章提出了一种量化神经网络到INT8的通用解决方案,包括量化后精度损失,通过training scheme来弥补精度等。主要包含三点:提出一种通用的量化方案,同时量化weight和activation 提出弥补量化后精度损失的训练方案 在MobileNet上实验以证明其有效性IAO算法实现过程1.过程综述对量化的实现是通过把常见操作转换为等价的八位版本达到...
原创
发布博客 2019.05.29 ·
685 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

CNN 量化技术

Quantize Model是一种模型加速(Model Acceleration)方法。背景介绍目前SOTA(State Of The Art,顶尖水平)的CNN都不适合在移动设备上部署,两点原因使CNN模型压缩和加速领域快速发展:从AlexNet开始,CNN都以ImageNet上的分类准确率作为性能评估的主要甚至唯一标准,这使得CNN架构的发展都没有考虑模型复杂度和计算效率问题。...
原创
发布博客 2019.05.29 ·
3772 阅读 ·
5 点赞 ·
2 评论 ·
17 收藏

A method of setting Adaptive S in Margin based Algorithm

本文相对应的代码请见:https://github.com/Emma0118/CosFace_Adaptive_S_11.Scale Parameter S在Margin Based Classification为基础的人脸识别算法中,有两个重要的超参数 S, M。S: 是一种特征缩放因子。最早在L2-Softmax[5]中提出,在进行了feature L2 normalize之后,...
原创
发布博客 2019.05.29 ·
318 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

人脸关键点检测算法--MTCNN

本文是对MTCNN进行人脸关键点检测和对齐的原理的描述,具体代码请见:https://github.com/Emma0118/preprocessing-images-for-Face-Recognition一、概述MTCNN(Multi-task Cascaded Convolutional Networks)是 一种多任务级联卷积神经网络,用以同时处理人脸检测和人脸关键点定位问题。作者...
原创
发布博客 2019.05.29 ·
6393 阅读 ·
3 点赞 ·
1 评论 ·
32 收藏

人脸数据集

MS-Celeb-1MTraining dataset, contains 10M images in version 1, is the largest publicly available one in the world https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing...
原创
发布博客 2019.05.29 ·
3940 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

基于facenet人脸识别算法的实验总结

1.原理与训练目前只初步完成算法在VGG_face2数据集上的训练,训练误差在30个epoch之内可以降到0.005以下。算法基于triple loss, 训练的目的是使组内的距离尽可能的小,组间的距离尽可能的大。距离的计算采用squared L2 norm。 找出所有的三元组合是一个很大的工作量。所以在实现的过程中,我们在positive中选择一个最不像的,在negative中...
原创
发布博客 2019.05.29 ·
1858 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏