CNN 量化技术

本文介绍了CNN模型量化的背景、原理和必要性,探讨了现有的量化压缩方法,特别是Google提出的八位量化方案,该方案能在保持性能的同时显著减少模型大小和计算资源需求,适用于移动设备上的CNN部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Quantize Model 是一种模型加速(Model Acceleration)方法。

背景介绍

目前SOTA(State Of The Art,顶尖水平)的CNN都不适合在移动设备上部署,两点原因使CNN模型压缩和加速领域快速发展:

  1. 从AlexNet开始,CNN都以ImageNet上的分类准确率作为性能评估的主要甚至唯一标准,这使得CNN架构的发展都没有考虑模型复杂度和计算效率问题。
  2. 想要在智能手机,AR/VR设备,无人机等移动设备上部署CNN,需要模型大小比较小、时耗比较低,才满足设备的内存限制,保证用户体验。

为何量化能工作

神经网络的训练是一个不断对权重添加细微修正的过程,这种细微修正一般需要浮点精度才能完成 (尽管也有工作试图从这个阶段开始就量化,比如二值化神经网络)。

但是当用一个训练好的模型来做推断时,模型却能够很好地应对较大的输入噪声。比如为了识别照片中的物体,网络必须忽略所有的 CCD 噪声、光照变化,以及其它与之前训练样本之间的非本质差异,而只关注重要的相似之处。这种能力意味着神经网络似乎把低精度计算视为另一种噪声来源,而在数值格式精度较低的情况下仍能给出准确结果。、

为何需要量化

1. 神经网络可能会占据很大的存储空间,比如最初的浮点数格式的 AlexNet 大小就有 200 MB。这个大小几乎全部来自神经元连接

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值