木子超同学

I can accept failure but I can't accept not trying.

CUDA 中解决 critical section 的一些策略

1. 问题陈述原子操作是多线程编程中经常遇到的问题,对此 CUDA 中也提供了一些基本的函数,例如 atomicAdd() 可以完成对一个元素的原子操作,例如常见的累加,比如统计直方图中对每一个灰度值的累加,如下所示,CPU 端执行的统计直方图,array 是一个图像数组,max 是图像中像素个数...

2015-07-29 20:03:24

阅读数 709

评论数 0

神经网络-文本识别

1. 数据集说明本次所用的数据集有 5000 个样本,每个样本对应于 20x20 大小的灰度图像。对应 9-0 共十个数字的手写图像。样本中每个像素都用浮点数表示。在样本数据中,每幅图像都被展开为一个 400 维的向量,构成了样本数据矩阵中的一行。完整的训练数据是一个 5000x400 的矩阵,其...

2015-07-19 15:54:59

阅读数 2598

评论数 0

神经网络(Neural Networks,NN)

1. 介绍神经网络在一定程度上受到生物学的启发,由一系列相互链接的神经单元组成,每一个单元都有一定数量的实值输入(可能由其他神经单元输出),并产生单一的实数值输出(可能成为其他很多单元的输入)。如下图所示:其中,g1,g2,...,gTg_1, g_2, ..., g_T 的输入都为:X0,X1,...

2015-07-17 22:43:39

阅读数 4324

评论数 0

SVM - 手写数字识别

1. 流程 收集数据:此处使用给定的文本文件 准备数据:基于二值图像构造数据 分析数据:对图像向量进行目测 训练算法:采用三种不同的方法,不同的参数 线性分类器 二次多项式核函数 径向基核函数 测试并计算错误率 2. 实验本实验使用的训练数据如下图所示,为若干个手写的 0 和 9 的数字图像。本...

2015-07-14 09:09:47

阅读数 6490

评论数 0

Kernel SVM (核函数支持向量机)

1. SVM 目标函数及约束条件SVM 的介绍及数学推导参考:我的CSDN,此处直接跳过,直接给出 SVM 的目标函数和约束条件:minw,b12wTws.t.yn(wTxn+b)≥1,n=1,..N \begin{array}{l} \mathop {{\bf{min}}}\limits_{\b...

2015-07-13 17:49:47

阅读数 8925

评论数 0

Dual SVM (对偶支持向量机)

1. SVM 目标函数及约束条件SVM 的介绍及数学推导参考:我的CSDN,此处直接跳过,直接给出 SVM 的目标函数和约束条件:minw,b12wTws.t.yn(wTxn+b)≥1,n=1,..N \begin{array}{l} \mathop {{\bf{min}}}\limits_{\b...

2015-07-12 16:50:02

阅读数 3232

评论数 1

SVM (支持向量机)

1. 介绍SVM (Support Vector Machine,支持向量机)是一种有监督的统计学习方法,能最小化经验误差和最大化几何边缘,被称为最大间隔分类器,可用于分类与回归分析。如上图所述的线性分类问题可以使用 PLA 或 pocket 方法求解。得到下式的线性分类器:h(x)=sign(w...

2015-07-11 19:10:42

阅读数 3151

评论数 0

最长重复子序列

1. 题目给定一个文本作为输入,查找其中最长的重复子字符串。2. 示例字符串为:“Ask not what your country can do for you, but what you can do for your country”。最长的重复字符串为:“can do for you”。3...

2015-05-10 20:57:27

阅读数 1537

评论数 0

再读 K-Means

1. 流程训练集为:{x(1),x(2),...,x(m)}\left\{ {{x^{\left( 1 \right)}},{x^{\left( 2 \right)}},...,{x^{\left( m \right)}}} \right\}其中,x(i)∈Rn{x^{\left( i \righ...

2015-04-18 22:08:58

阅读数 1060

评论数 0

已知随机函数RandN(),构造随机函数RandM()

题目已知一个能产生 [0, n) 的随机数的函数,设计一个能产生 [0, m)的随机数的函数。 要产生 [0, m) 的随机数,首先要确保输出 0、1、2、…、m-1 的概率相同。 验证函数 RandN其中,RandN 表示能产生 [0, n) 的随机数的函数,如下所示:unsigned in...

2015-04-18 12:31:21

阅读数 876

评论数 0

卡特兰数

1. 概念卡特兰数是组合数学中常出现的数列。满足:h(0)=1,h(1)=1h(n)=1n+1(2nn)=(2nn)−(2nn+1)\begin{array}{l} h(0)=1,h(1) =1\\ h(n) = \frac{1}{{n + 1}}\left( {\begin{array}{*{2...

2015-04-11 14:16:37

阅读数 599

评论数 0

K 近邻

1. 定义所谓 K 近邻算法(K-Nearest Neighbor)简称 KNN 算法。即给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最近邻的 K 个实例(也就是 K 个邻居),这 K 个实例的多数属于某个类,就把该输入实例分到这个类中。如上图所示,有两个不同的样本数据,分别用蓝...

2015-04-09 13:40:16

阅读数 553

评论数 0

十种排序方法总结

1. 插入排序 名称 插入排序 类型 比较排序 计算复杂度 O(N2)O(N^2) 空间复杂度 O(1)O(1) 稳定性 稳定 思想:每步都将一个待排序的数据按其键值大小插入到前面已经排好序的数据中,使其依然有序,直到全部插入完成为止。过程: 从第一个元素开始...

2015-03-31 20:07:00

阅读数 537

评论数 0

基于 K-means 和 PCA 的字典学习

1. 字典对于自然语言而言,本身具有非常复杂的特征,常规的正交基,例如傅立叶基,DCT 基,小波基等,都无法刻画出信号的全部特征,因此对应的变换域不是最佳的稀疏域。于是人们提出了用超完备冗余字典来对信号进行稀疏表示,原来的基函数被字典取代。用字典对图像进行稀疏表示,就是从字典中得到 m 个原子(字...

2015-03-30 12:30:29

阅读数 5336

评论数 2

PCA 主成分分析

性质1 实对称矩阵的特征值对应的特征向量一定是正交的。 证明:令实对称矩阵为 A,A的两个不同的特征值为 λ1\lambda _1, λ2\lambda _2,他们对应的特征向量为:μ1\mu _1,μ2\mu _2,则有:Aμ1=λ1AAμ2=λ2A A\mu _1 = \lambda _1...

2015-03-25 20:06:52

阅读数 1594

评论数 0

基数排序优化

原理基数排序就是先按照个位数字排序,然后按照十位数字排序,接着百位,千位,万位…,最终数组将变成有序数组。基数排序的分解 提取某一位(k位)上的数字 除以10^(k-1) 对10取余 按照提取的这一位上的数字进行计数排序 然后不断的循环上述过程,直到每一位的数字都被遍历。基的优化假设数组范围为(...

2015-03-23 19:51:23

阅读数 546

评论数 0

2014 亚马逊在线笔试

如下图所示的类杨辉三角,第一行为初始数组[1, 4, 5, 11],下面每行元素是上一行对应两个元素的和。 第一行元素的顺序可变 第一行有 N 个元素(2 ‹= N ‹= 20) 每个元素的值 x 满足(0 ‹ x ‹= 1000) 最终的结果 out(out ‹ 2^31-1) 计算可能的最大...

2015-03-23 11:55:57

阅读数 1162

评论数 0

K-means算法

数据训练集为:{x(1),x(2),...,x(m)}\left\{ {{x^{\left( 1 \right)}},{x^{\left( 2 \right)}},...,{x^{\left( m \right)}}} \right\}其中,x(i)∈Rn{x^{\left( i \right)}...

2015-03-23 11:39:59

阅读数 922

评论数 0

金字塔型锥状体和四面体

金字塔型锥状体和四面体 「Analysis of Puzzles」 Vol. 2: Mathematical Puzzles : Chapter 2 有一个金字塔型锥状体和一个四面体,其中金字塔型锥状体的底为正方形,四个侧面为正三角形;四面体的四个面都为正三角形,并且与金字塔型锥状体的侧面正三...

2015-03-23 11:29:05

阅读数 1908

评论数 0

Ramanujan's House

「Analysis of Puzzles」 Vol. 2: Mathematical Puzzles : Chapter 5 在一条街上有许多房子,这些房子从 1——n 连续编号,也就是说房子的编号从起始到结束的编号分别为:1,2,3,… ,n。在这条街上有一个房子,在这个房子的左侧的编号的和等于...

2015-03-23 11:14:57

阅读数 745

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭