end's coding life

赤子之心

机器学习入门笔记(十一)----推荐系统

推荐系统是目前非常受欢迎的一个机器学习应用。下面将以电影推荐为例子简单介绍实现推荐系统的方法。前提假设我们运营一个电影网站,每个用户可以对电影评分:0-5分。 n(u) 代表用户数量 n(m) 代表电影数量 r(i,j) 代表用户j是否对电影i进行评分。1 已评。0 未评 y(i,j) 代...

2017-10-25 20:14:16

阅读数:271

评论数:0

机器学习入门笔记(十)----异常检测

介绍异常检测是机器学习的一个常用应用,主要针对非监督学习问题。 比如: * 飞机引擎制造商,采集生产的引擎的各个特征,通过异常检测算法来鉴定引擎有异常的概率。 * 信用卡欺诈账户检测 * 服务器集群,异常节点监测。高斯分布俗称:正态分布。 两个参数定义一个分布: 1. 均值μ 2. ...

2017-10-22 19:17:35

阅读数:197

评论数:0

机器学习入门笔记(九)----无监督学习

一、特征对于无标签的数据,算法自动的解析出数据中的结构。二、应用市场细分、用户关系网络分析、星系数据分析等等三、K均值算法步骤:(1)随机选取聚类中心 (2)计算与聚类中心的距离,进行分类 (3)计算每个分类的均值,作为新的聚类中心 (4)重复2 3步骤,直到分类结果稳定参数:(1)K分类个...

2017-10-17 11:40:22

阅读数:199

评论数:0

机器学习入门笔记(八)----支持向量机SVM

支持向量机SVM在复杂的非线性方程方面,比逻辑回归和神经网络表现的更为清晰、强大。 1. 通过逻辑回归了解SVM大致形式 设z = thetaT * x 假设函数:h(x) = 1 / (1 + e^(-z)) 分类为1  if h > 0.5 即 z >0 分类为0  if h ...

2017-09-25 10:14:03

阅读数:252

评论数:0

机器学习入门笔记(七)----机器学习实用方法

当我们实现一个机器学习模型后,发现效果并不是很理想,改进的方法有非常多,那么如果诊断当前模型,选择一条合适的道路去优化就成了一项必不可少的技能,否则‘拍脑门’的胡乱尝试,将会是一件非常浪费时间的事情,且最终也不一定能得到很好的效果。 1. 评估一个假设模型: 我们通过算法得到一个假设模型后,该模型...

2017-09-19 09:44:37

阅读数:243

评论数:0

机器学习入门笔记(六)----神经网络

1.模型表示: 模型分层:输入层、输出层、隐藏层。a(i) i表示第几层。thera(i) : 为第i层到第i+1层间的权重参数。 2. 向前传播:g(theta(i) * a(i))得到a(i+1)。最后一层即是h(x) 3. 解决分类问题: 类别 c = 2时,输出层仅一个节点,与...

2017-09-14 18:58:35

阅读数:166

评论数:0

机器学习入门笔记(五)----过拟合问题

上右边的图像,展示过拟合的情况。 过拟合问题,解决方法: 1.减少特征数量 2.正规化:保留所有特征,弱化特征参数。 正规化(regularization): 代价函数:  1.线性回归:  (1)梯度下降 对theta0不惩罚,其余theta引入正规化参数lama...

2017-09-07 18:33:48

阅读数:181

评论数:0

机器学习入门笔记(四)----逻辑回归

1.逻辑回归用于解决分类问题,简单举例 : 判定邮件是否为垃圾邮件;肿瘤是良性的还是恶性的. 2.假设函数:    3.预测结果h(x)值的含义为 : x的分类结果属于'1'的概率, 概率表示:

2017-08-31 23:13:21

阅读数:192

评论数:0

机器学习入门笔记(三)----Octave简单使用

1. 四则运算: 1 + 2 1 * 2 1 / 2 1 - 2 2. 变量赋值 a = 1a = 1;  % 不显示赋值结果 3. 注释: % 4. 相等 / 不等 :  1 == 2 %结果是0,表示为假1 ~= 2 %结果为1 5. 逻辑 / 位运算: 1 || 0   ...

2017-08-26 21:32:36

阅读数:783

评论数:0

机器学习入门笔记(二)----线性回归

1. 目标 : 找到使代价函数最小的函数h。 2. 代价函数:cost function,J。 平方误差代价函数:J(θ0,θ1)=12m∑i=1m(y^i−yi)2=12m∑i=1m(hθ(xi)−yi)2... 3. 梯度下降法:将代价函数J取值最小化。 定义:θj:=θj−α∂∂θj...

2017-08-24 22:54:17

阅读数:209

评论数:0

机器学习入门笔记(一)----初次见面

1. 尝试对机器学习进行定义: 给予机器自我学习的能力对于任务T完成质量的度量P,可以随着经验E提升。 2. 分类: 监督学习:已有数据前提下,给出一个算法。算法可以得出数据集中的结果,并尽量得出更多数据集外的正确结果。无监督学习:不确定结果是什么样子的自主学习。 3. 监...

2017-08-23 20:45:02

阅读数:181

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭