end's coding life

赤子之心

机器学习入门笔记(八)----支持向量机SVM

支持向量机SVM在复杂的非线性方程方面,比逻辑回归和神经网络表现的更为清晰、强大。 1. 通过逻辑回归了解SVM大致形式 设z = thetaT * x 假设函数:h(x) = 1 / (1 + e^(-z)) 分类为1  if h > 0.5 即 z >0 分类为0  if h ...

2017-09-25 10:14:03

阅读数:291

评论数:0

机器学习入门笔记(七)----机器学习实用方法

当我们实现一个机器学习模型后,发现效果并不是很理想,改进的方法有非常多,那么如果诊断当前模型,选择一条合适的道路去优化就成了一项必不可少的技能,否则‘拍脑门’的胡乱尝试,将会是一件非常浪费时间的事情,且最终也不一定能得到很好的效果。 1. 评估一个假设模型: 我们通过算法得到一个假设模型后,该模型...

2017-09-19 09:44:37

阅读数:262

评论数:0

机器学习入门笔记(六)----神经网络

1.模型表示: 模型分层:输入层、输出层、隐藏层。a(i) i表示第几层。thera(i) : 为第i层到第i+1层间的权重参数。 2. 向前传播:g(theta(i) * a(i))得到a(i+1)。最后一层即是h(x) 3. 解决分类问题: 类别 c = 2时,输出层仅一个节点,与...

2017-09-14 18:58:35

阅读数:178

评论数:0

机器学习入门笔记(五)----过拟合问题

上右边的图像,展示过拟合的情况。 过拟合问题,解决方法: 1.减少特征数量 2.正规化:保留所有特征,弱化特征参数。 正规化(regularization): 代价函数:  1.线性回归:  (1)梯度下降 对theta0不惩罚,其余theta引入正规化参数lama...

2017-09-07 18:33:48

阅读数:208

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭