Andrew学习笔记--第一周

https://www.coursera.org/learn/machine-learning/lecture/1VkCb/supervised-learning

点击打开链接

Andrew第一讲:监督学习,分类与回归的区别;supervised learning


(视频截图)

回归问题是:根据历史数据,预测可能的输出值。

分类问题:0,1,给于每类数据特定的标签。对应未知数据进行分类属于哪一类。

------------------------------------------------------------------------------2016-8-28:17:02-----------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------2016/09/03 14:14----------------------------------------------------------------------------------------------------------------------------

非监督unsupervised learning

事先不知道样本归属,由算法自动分出类别。

Model and Cost Function

https://www.coursera.org/learn/machine-learning/lecture/db3jS/model-representation

线性回归

-------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------cost function


------------------------------ 寻找参数使损伤函数J最小。


---------------------------损伤函数计算-(最小均方误差)

https://www.coursera.org/learn/machine-learning/lecture/8SpIM/gradient-descent

点击打开链接

随机梯度下降



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/enjoy_learn/article/details/52346572
个人分类: machine learning
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭