DeepLearning 0.1 documentation中文翻译_内容扉页

本文为《DeepLearning 0.1 documentation》的中文翻译,本人水平有限,如有错误或不当,欢迎批评指正!非常感谢!

原文网址:http://deeplearning.net/tutorial/contents.html

注:点击英文上的链接会转到原网页,点击对应中文转到翻译网页

包括以下内容:

Contents

  • LICENSE(许可)
  • Deep Learning Tutorials深度学习教程
  • Getting Started(入门)
    • Download(下载)
    • Datasets(数据集)
    • Notation(符号)
    • A Primer on Supervised Optimization for Deep Learning(深度学习有监督优化基础)
    • Theano/Python Tips
  • Classifying MNIST digits using Logistic Regression(采用Logistic回归分类MNIST数字)
    • The Model(模型)
    • Defining a Loss Function(定义损失函数)
    • Creating a LogisticRegression class(创建LogisticRegression类)
    • Learning the Model(模型学习)
    • Testing the model(测试模型)
    • Putting it All Together(程序汇总)
  • Multilayer Perceptron(多层感知器)
    • The Model(模型)
    • Going from logistic regression to MLP(从LG到MLP)
    • Putting it All Together(汇总)
    • Tips and Tricks for training MLPs(训练多层感知器的的一点提示与技巧)
  • Convolutional Neural Networks (LeNet)(卷积神经网络CNN)
    • Motivation
    • Sparse Connectivity(稀疏连接性)
    • Shared Weights(共享权重)
    • Details and Notation(细节与符号)
    • The Convolution Operator(卷积操作)
    • MaxPooling(最大化池)
    • The Full Model: LeNet(完整模型)
    • Putting it All Together
    • Running the Code(运行代码)
    • Tips and Tricks(提示与技巧)
  • Denoising Autoencoders (dA)去噪自编码器DA
    • Autoencoders(自编码器 )
    • Denoising Autoencoders(去噪自编码器)
    • Putting it All Together
    • Running the Code
  • Stacked Denoising Autoencoders (SdA)堆栈式去噪自编码器SDA
    • Stacked Autoencoders(堆栈式自编码器)
    • Putting it all together
    • Running the Code
    • Tips and Tricks
  • Restricted Boltzmann Machines (RBM)受限玻尔兹曼机
    • Energy-Based Models (EBM)(基于能量的模型)
    • Restricted Boltzmann Machines (RBM)
    • Sampling in an RBM(RBM中的采样)
    • Implementation(实现)
    • Results(结果)
  • Deep Belief Networks(深度信念网络)
    • Deep Belief Networks
    • Justifying Greedy Layer-Wise Pre-Training(证明逐层贪婪式预训练)
    • Implementation
    • Putting it all together
    • Running the Code
    • Tips and Tricks
  • Hybrid Monte-Carlo Sampling(混合蒙特卡罗采样HMC)
    • Theory
    • Implementing HMC Using Theano(使用Theano实现HMC)
    • Testing our Sampler
    • References
  • Recurrent Neural Networks with Word Embeddings(字嵌入经常性神经网络)
    • Summary
    • Code - Citations - Contact(代码 - 引文 - 联系)
    • Task
    • Dataset
    • Recurrent Neural Network Model(经常性的神经网络模型)
    • Evaluation(评估)
    • Training
    • Running the Code
  • LSTM Networks for Sentiment Analysis(用于情感分析的LSTM网络)
    • Summary
    • Data
    • Model
    • Code - Citations - Contact(代码 - 引文 - 联系)
    • References
  • Modeling and generating sequences of polyphonic music with the RNN-RBM(用RNN-RBM建模并生成和弦音乐序列)
    • The RNN-RBM(RNN-RBM:递归神经网络和受限玻尔兹曼机)
    • Implementation
    • Results
    • How to improve this code(改进代码)
  • Miscellaneous(杂项)
    • Plotting Samples and Filters(绘制样本和过滤器)
  • References
发布了84 篇原创文章 · 获赞 130 · 访问量 41万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览