DeepLearning 0.1 documentation中文翻译: Denoising Autoencoders (DA)_去噪自编码器

Note

Note

自编码器(Autoencoders)

y=s(Wx+b)

z=s(Wy+b)

(这里, 撇符号不表示矩阵转置.) z$\mathbf{z}$ 应当被看作给定编码 y$\mathbf{y}$ 时, 对 x$\mathbf{x}$ 的预测. 逆映射的权重矩阵 W$\mathbf{W'}$ 可以选择约束成正向映射的转置: W=WT$\mathbf{W'} = \mathbf{W}^T$. 这被称为捆绑权重. 如果不使用捆绑的权重, 那么对这个模型的参数 (即 W,b,b$\mathbf{W}, \mathbf{b}, \mathbf{b'}$, 和 W$\mathbf{W'}$(不使用捆绑权重)) 进行优化, 以使得平均重构误差最小.

LH(x,z)=k=1d[xklogzk+(1xk)log(1zk)]

class dA(object):
"""Denoising Auto-Encoder class (dA)

A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error.

.. math::

\tilde{x} ~ q_D(\tilde{x}|x)                                     (1)

y = s(W \tilde{x} + b)                                           (2)

x = s(W' y  + b')                                                (3)

L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)]      (4)

"""

def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
n_visible=784,
n_hidden=500,
W=None,
bhid=None,
bvis=None
):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP.

:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights

:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from rng

:type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA

:type n_visible: int
:param n_visible: number of visible units

:type n_hidden: int
:param n_hidden:  number of hidden units

:type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None

:type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None

:type bvis: theano.tensor.TensorType
:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None

"""
self.n_visible = n_visible
self.n_hidden = n_hidden

# create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

# note : W' was written as W_prime and b' as b_prime
if not W:
# W is initialized with initial_W which is uniformely sampled
# from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
# converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
),
dtype=theano.config.floatX
)
W = theano.shared(value=initial_W, name='W', borrow=True)

if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)

if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
)

self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input is None:
# we use a matrix because we expect a minibatch of several
# examples, each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input

self.params = [self.W, self.b, self.b_prime]

def get_hidden_values(self, input):
""" Computes the values of the hidden layer """
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)
def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden layer

"""
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)

def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """

tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using
#        minibatches, L will be a vector, with one entry per
#        example in minibatch
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# note : L is now a vector, where each element is the
#        cross-entropy cost of the reconstruction of the
#        corresponding example of the minibatch. We need to
#        compute the average of all these to get the cost of
#        the minibatch
cost = T.mean(L)

# compute the gradients of the cost of the dA with respect
# to its parameters
# generate the list of updates
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
]

return (cost, updates)

da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500
)

corruption_level=0.,
learning_rate=learning_rate
)

train_da = theano.function(
[index],
cost,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}
)

去噪自编码器(Denoising Autoencoders)

from theano.tensor.shared_randomstreams import RandomStreams

def get_corrupted_input(self, input, corruption_level):
""" This function keeps 1-corruption_level entries of the inputs the same
and zero-out randomly selected subset of size coruption_level
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial

this will produce an array of 0s and 1s where 1 has a probability of
1 - corruption_level and 0 with corruption_level
"""
return  self.theano_rng.binomial(size=input.shape, n=1, p=1 - corruption_level) * input

class dA(object):
"""Denoising Auto-Encoder class (dA)

A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error.

.. math::

\tilde{x} ~ q_D(\tilde{x}|x)                                     (1)

y = s(W \tilde{x} + b)                                           (2)

x = s(W' y  + b')                                                (3)

L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)]      (4)

"""

def __init__(self, numpy_rng, theano_rng=None, input=None, n_visible=784, n_hidden=500,
W=None, bhid=None, bvis=None):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input is
the result of some computations, or when weights are shared between the
dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP.

:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights

:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is generated
based on a seed drawn from rng

:type input: theano.tensor.TensorType
:paran input: a symbolic description of the input or None for standalone
dA

:type n_visible: int
:param n_visible: number of visible units

:type n_hidden: int
:param n_hidden:  number of hidden units

:type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None

:type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None

:type bvis: theano.tensor.TensorType
:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None

"""
self.n_visible = n_visible
self.n_hidden = n_hidden

# create a Theano random generator that gives symbolic random values
if not theano_rng :
theano_rng = RandomStreams(rng.randint(2 ** 30))

# note : W' was written as W_prime and b' as b_prime
if not W:
# W is initialized with initial_W which is uniformely sampled
# from -4.*sqrt(6./(n_visible+n_hidden)) and 4.*sqrt(6./(n_hidden+n_visible))
# the output of uniform if converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)), dtype=theano.config.floatX)
W = theano.shared(value=initial_W, name='W')

if not bvis:
bvis = theano.shared(value = numpy.zeros(n_visible,
dtype=theano.config.floatX), name='bvis')

if not bhid:
bhid = theano.shared(value=numpy.zeros(n_hidden,
dtype=theano.config.floatX), name='bhid')

self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input == None:
# we use a matrix because we expect a minibatch of several examples,
# each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input

self.params = [self.W, self.b, self.b_prime]

def get_corrupted_input(self, input, corruption_level):
""" This function keeps 1-corruption_level entries of the inputs the same
and zero-out randomly selected subset of size coruption_level
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial

this will produce an array of 0s and 1s where 1 has a probability of
1 - corruption_level and 0 with corruption_level
"""
return  self.theano_rng.binomial(size=input.shape, n=1, p=1 - corruption_level) * input

def get_hidden_values(self, input):
""" Computes the values of the hidden layer """
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)

def get_reconstructed_input(self, hidden ):
""" Computes the reconstructed input given the values of the hidden layer """
return  T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)

""" This function computes the cost and the updates for one trainng
step of the dA """

tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values( tilde_x)
z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using minibatches,
#        L will  be a vector, with one entry per example in minibatch
L = -T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1 )
# note : L is now a vector, where each element is the cross-entropy cost
#        of the reconstruction of the corresponding example of the
#        minibatch. We need to compute the average of all these to get
#        the cost of the minibatch
cost = T.mean(L)

# compute the gradients of the cost of the dA with respect
# to its parameters
# generate the list of updates
for param, gparam in zip(self.params, gparams):
updates.append((param, param - learning_rate * gparam))

return (cost, updates)

整合程序(Putting it All Together)

# allocate symbolic variables for the data
index = T.lscalar()  # index to a [mini]batch
x = T.matrix('x')  # the data is presented as rasterized images

######################
# BUILDING THE MODEL #
######################

rng = numpy.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))

da = dA(numpy_rng=rng, theano_rng=theano_rng, input=x,
n_visible=28 * 28, n_hidden=500)

learning_rate=learning_rate)

givens = {x: train_set_x[index * batch_size: (index + 1) * batch_size]})

start_time = time.clock()

############
# TRAINING #
############

# go through training epochs
for epoch in xrange(training_epochs):
# go through trainng set
c = []
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))

print 'Training epoch %d, cost ' % epoch, numpy.mean(c)

end_time = time.clock

training_time = (end_time - start_time)

print ('Training took %f minutes' % (pretraining_time / 60.))

image = Image.fromarray(tile_raster_images(X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))
image.save('filters_corruption_30.png')

运行代码(Running the Code)

python dA.py

The resulted filters when we do not use any noise are :

The filters for 30 percent noise :

DeepLearning 0.1 documentation中文翻译

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客