gcd/辗转相除法的证明
此文仅供蒟蒻参考,dalao请我也不记得是左上角还是右上角了。
前言
这不是小学奥数吗?
数学上来先打表,数论只会gcd。
上面几句话一直打击我学习数论的信心。
不仅只会gcd,连gcd都不会证明,可见我有多菜了。
直到受到某位dalao的指教,我终于证明了gcd。
dalao曰:”数论,数字之理论也。有术曰辗转相除,欲证此术,必先知反对称矣。”
那么问题来了,反对称是什么。
知识储备
下面内容很基础。对于我的证明方法来说,是必须要知道的。
1.整数具有大小(顺序)关系,用≤、≥、<、>、=来表示,其中≤具有反对称性,即:
a≤b a ≤ b 且 b≤a b ≤ a <=> a=b a = b (a∈Z,b∈Z) ( a ∈ Z , b ∈ Z )
可以说是非常基础的东西了,但是却是证明gcd的关键方法。
2.符号 | | 的含义:
若 (a∈Z,a≠0,q∈Z,b∈Z) ( a ∈ Z , a ≠ 0 , q ∈ Z , b ∈ Z ) ,则称 a a 为 的约数(或 a a 整除 ),即 b/a b / a 的结果为整数(这里注意区分除和除以的区别),记作: a|b a | b ,符号 a|b a | b 蕴含条件 a≠0 a ≠ 0 。
3.整除的一个性质:
a|b a | b 且 a|c a | c => a|bx+cy a | b x + c y

最低0.47元/天 解锁文章
850

被折叠的 条评论
为什么被折叠?



