JZOJ 5232. 【NOIP2017模拟A组模拟8.5】带权排序

Description
Nope
Input

输入文件名为sort.in
第一行包含一个整数n。
接下来n行,每行三个整数si,li,ri,表示Ai的值为[li,ri] 中的随机整数。

Output

输出文件名为sort.out。
输出一个整数,表示答案。

Sample Input

输入1:
4
1 2 3
4 4 6
2 0 5
3 2 6

输入2:
10
53736 68 512
82493 870 920
77300 206 576
63900 4 565
68675 0 488
13610 4 922
57472 614 825
37474 394 970
51896 398 766
77136 656 723

Sample Output

输出1:
650000033

输出2:
743178372

Data Constraint

对于20%的数据,n<=6,0<=li<=ri<=15
对于40%的数据,n<=10,0<=li<=ri<=20
对于60%的数据,0<=li<=ri<=1000
对于100%的数据,n<=10 ^ 5,0<=li<=ri<=10 ^ 9,0<=si<=10^9

Solution

很有意思的题目。

E ( f ( A ) ) = E ( ∑ i = 1 n s i p i ) = ∑ i = 1 n s i E ( p i ) E(f(A))=E(\sum_{i=1}^{n}s_ip_i)=\sum_{i=1}^{n}s_iE(p_i) E(f(A))=E(i=1nsipi)=i=1nsiE(pi)
f i f_i fi表示比 i i i小的数的个数,那么 p i = f i + 1 p_i=f_i+1 pi=fi+1
所以有 E ( f ( A ) ) = ∑ i = 1 n s i E ( f i ) + ∑ i = 1 n s i E(f(A))=\sum_{i=1}^{n}s_iE(f_i)+\sum_{i=1}^{n}s_i E(f(A))=i=1nsiE(fi)+i=1nsi
考虑如何求 E ( f i ) E(f_i) E(fi)

E ( f i ) = ∑ j &lt; i P ( a j ≤ a i ) + ∑ j &gt; i P ( a j &lt; a i ) E(f_i)=\sum_{j&lt;i} P(a_j\leq a_i)+\sum_{j&gt;i} P(a_j&lt;a_i) E(fi)=j<iP(ajai)+j>iP(aj<a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值