Description

Input
输入文件名为sort.in。
第一行包含一个整数n。
接下来n行,每行三个整数si,li,ri,表示Ai的值为[li,ri] 中的随机整数。
Output
输出文件名为sort.out。
输出一个整数,表示答案。
Sample Input
输入1:
4
1 2 3
4 4 6
2 0 5
3 2 6
输入2:
10
53736 68 512
82493 870 920
77300 206 576
63900 4 565
68675 0 488
13610 4 922
57472 614 825
37474 394 970
51896 398 766
77136 656 723
Sample Output
输出1:
650000033
输出2:
743178372
Data Constraint
对于20%的数据,n<=6,0<=li<=ri<=15
对于40%的数据,n<=10,0<=li<=ri<=20
对于60%的数据,0<=li<=ri<=1000
对于100%的数据,n<=10 ^ 5,0<=li<=ri<=10 ^ 9,0<=si<=10^9
Solution
很有意思的题目。
E ( f ( A ) ) = E ( ∑ i = 1 n s i p i ) = ∑ i = 1 n s i E ( p i ) E(f(A))=E(\sum_{i=1}^{n}s_ip_i)=\sum_{i=1}^{n}s_iE(p_i) E(f(A))=E(∑i=1nsipi)=∑i=1nsiE(pi)
设 f i f_i fi表示比 i i i小的数的个数,那么 p i = f i + 1 p_i=f_i+1 pi=fi+1。
所以有 E ( f ( A ) ) = ∑ i = 1 n s i E ( f i ) + ∑ i = 1 n s i E(f(A))=\sum_{i=1}^{n}s_iE(f_i)+\sum_{i=1}^{n}s_i E(f(A))=∑i=1nsiE(fi)+∑i=1nsi
考虑如何求 E ( f i ) E(f_i) E(fi)。
E ( f i ) = ∑ j < i P ( a j ≤ a i ) + ∑ j > i P ( a j < a i ) E(f_i)=\sum_{j<i} P(a_j\leq a_i)+\sum_{j>i} P(a_j<a_i) E(fi)=∑j<iP(aj≤ai)+∑j>iP(aj<a

最低0.47元/天 解锁文章
211

被折叠的 条评论
为什么被折叠?



