eric1984
码龄18年
关注
提问 私信
  • 博客:30,896
    社区:1,552
    32,448
    总访问量
  • 140
    原创
  • 104,066
    排名
  • 15
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:喜欢技术的架构师

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2007-04-19
博客简介:

eric1984的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    90
    当月
    0
个人成就
  • 获得19次点赞
  • 内容获得2次评论
  • 获得41次收藏
创作历程
  • 1篇
    2024年
  • 5篇
    2022年
  • 8篇
    2021年
  • 8篇
    2020年
  • 5篇
    2019年
  • 19篇
    2018年
  • 44篇
    2017年
  • 6篇
    2016年
  • 1篇
    2015年
  • 8篇
    2013年
  • 31篇
    2012年
  • 8篇
    2011年
成就勋章
TA的专栏
  • java
    52篇
  • python ai 区块链
    21篇
  • 其他
    6篇
  • 数据
    16篇
  • 游戏
    15篇
  • c++
    11篇
  • 业务
  • camunda
兴趣领域 设置
  • 大数据
    stormsparketl
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

git rebase研究

3》重置当前分支的提交历史,使它和dev分支的提交历史保持一致,即:原本只出现在dev分支上的提交记录c1,现在也出现在了当前分支上;1》找到当前分支和dev分支各自的最新提交c1和c2;然后从c1和c2开始向前回溯,找到它们在提交历史上的“共同祖先”c0;4》在这个基础上,然后再逐一追加只在当前分支上出现的提交记录,比如:c2,整个过程才算结束。2》把当前分支上从c0往后的每个提交记录和c0进行对比,并把对比结果存到临时文件里;一、把别的分支的commit顺序迁移到当前分支(重建基线),线性化提交历史。
原创
发布博客 2024.09.13 ·
198 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

DCI架构的理解

/ DCI,app层与domain层之间有了一个role的桥廊,app(context)不会耦合特别多的属性,只耦合少部分的行为。对聚合根的直接耦合,变成了对角色的使用。DDD里聚合根同时实现类的属性和方法,容易出现上帝类;传统的ddd架构,领域层是纯oop模型,应用层使用领域层的聚合根来完成业务,DCI是把。总结:app与domain层中间,添加一层role,用来切分聚合根。// context里面仅依赖角色,不直接依赖聚合根Person。// 纯DDD,聚合根是铁板一块,容易形成上帝类。
原创
发布博客 2022.11.23 ·
605 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

关于js的屏幕分辨率适配

5、显示效果:默认js不做任何自适应的时候(位置和大小都是固定像素值),os放大控件大小时,os的控件都放大了,chrome全屏时自己做了自适应,保证不会超出屏幕。html的渲染区域变大了,html里面的字体放大了,相对位置变大了,但是屏幕分辨率不变,所以导致部分内容会超出屏幕范围,需要左右拖拽来显示。3、操作系统的控件大小伸缩:操作系统会在默认屏幕分辨率的基础上,做大小的伸缩,操作系统提供的控件会做伸缩的自适应:分辨率变大时,字体和控件会等比例放大。2、显示器分辨率 硬件的分辨率,不一定和大小正相关。
原创
发布博客 2022.10.17 ·
2006 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

springdata jdbc设计理念

多对多的关系数据结构上用2个聚合实现,领域函数上使用实体。// 领域服务是添加作者,数据结构是存储关联关系。DDD里的核心关系,1、聚合 2、关联。
原创
发布博客 2022.09.02 ·
271 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

JVM GC

GC最佳实践
原创
发布博客 2022.08.29 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于数据湖 数据仓库和湖仓一体

1、数据仓库:传统的数仓ETL建模和分析处理2、数据湖:基于原始的半结构化、非结构化数据,使用分布式的计算任务进行分析和处理,不是基于良好建模的数仓,强调数据的动态模型、原始的数据3、湖仓一体:数据就是一份,底层是企业的全部数据,包括结构化、半结构化、非结构化,中间通过统一的加工处理直接支撑上层所有仓的应用(BI、报表以及湖的应用),不再需要ETL连通(原来是存储2份数据,1份是原始的,1份是ETL之后的),数据能够直接用来进行分析。4、胡仓一体技术实现方案:1》Snowflake(分布式并行计算
原创
发布博客 2022.02.10 ·
1697 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

dataql的内部实现

1、整体是自定义了一门dsl,并实现了指令集和执行器2、核心数据结构QueryModel 语法树 QIL 指令集 Query:整体dsl解析执行的门面 DataModel:通用数据类型,可以解包成具体的object list 原子类型等UDF (User-Defined Function)用户定义函数,mysql的udf是用c写的,dataql的udf是用java写的(注册后可以在脚本中使用)3、运行时核心逻辑QueryResultImpl QueryImpl.execute(Custom...
原创
发布博客 2021.09.28 ·
369 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

mysql的锁 和可重复读 RR的实际业务场景与实际意义

mysql的锁锁的颗粒度,决定并发度和速度InnoDB的行锁是针对索引加的锁,不是针对记录加的锁。并且该索引不能失效,否则都会从行锁升级为表锁;rr的业务场景:多个相关的查询,同时取出来使用,并且要保证业务含义一致1》 对数。 上个月的余额,本月的账单(3个结果),当前的余额(修改了1个结果),正常应该是上月余额-本月账单==当前余额,现在因为2次读时,差了1个更新事务,所以对不上了2》 汇总数额不对。同一个事务内,先查详情,后聚合count,详情加起来和count返回的结果不一致3》..
原创
发布博客 2021.06.17 ·
704 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

nginx 常用配置

多进程模型:master负责管理,worker负责处理连接和http请求sendfile:从默认的 磁盘--内核(read文件)--用户态--内核(write数据)--协议栈,变成磁盘--内核--协议栈upstream 定义后端的多个服务器地址server { listen 80 default_server; # 域名不匹配时的默认server listen [::]:80 default_server; server...
原创
发布博客 2021.06.17 ·
2020 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

postman学习

1、全局变量 环境变量 测试集变量{{variable}}2、测试脚本pm.test("Status code is 200", function () { pm.response.to.have.status(200); });3、发送前的脚本pm.globals.set("filter", "user-1");4、工作流 用test脚本来实现postman.setNextRequest('Postman Echo PUT')5、取出数据塞入全局变量var jsonData = pm
原创
发布博客 2021.06.17 ·
70 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于mysql的 mvcc和read view

RR隔离级别下,整个事务开始时创建1个read view,后面的事务提交的结果,不会体现在读的结果里。RC隔离级别下,每个快照读,都会生成新的read view。mysql的所有的快照读,都不保证读到最新的结果,因为都不会加锁...
原创
发布博客 2021.06.17 ·
165 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java并发 三 概念和原理

调,是应用为了实现某种逻辑而写的,一般基于互斥实现4、POSIX中定义的工具:内存barrier(避免多核cache导致的不一致)、mutex、condition、readwritelock、semaphore5、管程 monitor,把pv操作、加解锁抽象成数据结构,而不是散列在线程的代码里6、io缓存:cpu用DMA缓存到内核,之后拷贝到用户空间,比不用缓存好的地方:不用多次分配和释放内存;可以一次让磁盘读入整个块;在读入的时候,使用更少的cpu干预。7、内存映射:内核和用户空间使用同一
原创
发布博客 2017.11.01 ·
103 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

c++以太坊编译

uild  cmake ..               cmake --build . 编译结果在每个子目录中
原创
发布博客 2017.12.04 ·
92 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

后端技术的演化

据分析2、ETL、数据仓库->大数据、大规模分布式数据处理->大规模机器学习->实时数据处理三、各个技术之间的演化对应关系mysql VS redis ETL VS storm数据仓库 VS hive数据挖掘 VS 机器学习OA VS 工作流IPC VS RPC内存 VS redis查找 VS 搜索(solr)文件系统 VS 分布式存储map/reduce VS 流计算
原创
发布博客 2018.01.05 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

light-task-scheduler

时性的任务可以使用调度器scheduler(每个任务一个线程,对于周期性任务非常浪费资源)2、如果有非常多调度性任务需要处理,可以每台机器分别布置一套调度器,并且不同机器调度不同的任务。3、2中每个机器进行调度很浪费(比如每1ms检查一次条件),不同的任务不能跨机器共享硬件,而且无法看到所有调度任务的整体的情况。另一种方案是,一个master进行时间和条件的调度,到了执行条件再扔给具体的机器执行,这样很方便进行横向扩展,只要维护一套调度集群,就解决所有调度需求(分布式调度)4、分布式调度引进
原创
发布博客 2018.06.09 ·
311 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java spi机制

oader加载具体的实现(通过无参数构造函数实现对象创建)2、提供者在jar包的META-INF/services/目录里创建前面接口的全名文件3、在文本文件里写上具体实现类的全名4、具体的例子,数据库驱动spi META-INF/services/java.sql.Driver ,实现者 /mysql-connector-java/5.1.29/mysql-connector-java-5.1.29.jar
原创
发布博客 2018.06.22 ·
76 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ElasticSearch 二 查询快的原因

个term对应原来的一个field),并且term本身进行索引(trie 树)3、数据进行压缩4、组合查询时的优化注意点:ID尽量有规律、去掉不必要的索引、去掉不必要的analyzed
原创
发布博客 2018.07.09 ·
105 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ElasticSearch 三 建立索引快的原因

、es的改进    1、新的segment不是fsync到磁盘,而是同步到内核文件缓存(默认1s),内核文件缓存再在合适的时间真正刷磁盘    2、fsync之前怎么保证可靠?使用translog记录这段时间的操作,translog本身每5秒刷一次磁盘    3、合并小的旧的segment  代码: Settings settings = ImmutableSettings.settingsBuilder()              .put("clien
原创
发布博客 2018.07.09 ·
78 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

dubbo 概览

;dubbo:reference id="userService" interface="org.huxin.dubbo.test.user.service.UserInterface"                     stub="org.huxin.dubbo.test.UserServiceStub" protocol="dubbo"/>         public class UserS
原创
发布博客 2018.07.09 ·
70 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大数据数据仓库 《大数据之路:阿里巴巴大数据实践》 读书笔记

据集合,用于支持管理决策(Decision Making Support)。    其中最核心的是集成。    2、ETL:抽取 转换 加载 把数据从不同的oltp系统中集成到数据仓库中的过程    3、数据模型:仓库里的数据怎么组织?(数据结构)目前业界的事实标准是 维度模型    4、大数据:大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度
原创
发布博客 2018.07.17 ·
99 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多