nvdla study ---内存数据格式

本文深入探讨NVDLA设计,重点解析其内存中数据格式,包括输入和输出格式的细节。内容涵盖weightdata和activation data的输入格式,如direct convolution、Winograd convolution、feature data等。同时,文章讨论了精度类型转换规则,如int8、int16和fp16的支持情况。此外,还详细介绍了feature data的3D cube组织方式和weight数据的存储顺序。最后,总结了不同硬件层的数据组织格式特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理解nvdla设计,首先必须头脑中对数据格式及其内存存放形式有个清晰的认识。
1 输入格式
1)weightdata输入格式:

weight for direct convolution
weight for image input
weight for Winograd convolution

2)activation data输入格式:
feature data format
pixel format (ROI input)

2 输出格式
feature data format
bias data
PReLU data
batch-normalization data
element-wise data
3 精度类型
支持三种精度:int8,int16,fp16
图像在运算前被转成一种类型。featuredata可以是任一一种类型。
引擎支持动态转换类型,需要遵循以下规则:
1)NVDLA convolution pipeline supports precision conversion for image
input mode only.
2)Direct convolution (DC) mode and Winograd convolution mode do not
support precision conversion
3)For image input mode (please see section 6.1.1.4), pipeline allows
conversion from integer to all 3 types. Floating point images can
only be converted to fp16.
3&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值