什么是报表的多样性数据源问题?如何解决?

在报表开发早期,报表连接的数据源基本只有关系数据库,而且经常只有一种或者只有一个数据库。

但今天就不一样了,数据源种类繁多,除了 RDBMS 还有
1.MongoDB、Cassandra、HBase、Redis 这些 NoSQL 数据库;
2.TXT/CSV、Excel、JSON/XML 等文件;
3.HDFS 等分布式文件系统;
4.webService;
5.ES、Kafka 等其他数据源形式
……

imagepng

当这些都成为报表数据源,报表需要从这些数据源分别或混合取数运算进行报表呈现时,报表就出现了多样性数据源问题。

具体是什么样的问题呢?

主要是两个问题,复杂计算和多源关联计算。

1. 复杂计算
我们知道,报表中的计算主要集中在两处:

一处是数据准备阶段。
通过 SQL/ 存储过程 /Java 程序为报表准备数据,这个阶段可能涉及非常复杂的数据处理逻辑。这样, 计算能力尤其是集合计算能力较强的 SQL 就比较擅长了,通过 SQL、复杂 SQL 可以完成大部分的报表数据准备任务,有些涉及较多业务逻辑的计算还可以使用存储过程,万不得已时用 JAVA 自定义数据源完成。

这是早期基于单一 RDBMS 开发报表时数据准备的常用手段,主要依靠 RDBMS(SQL)的计算能力来实现。

但这种方式在多样性数据源的场景下就行不通了,因为有的数据源根本就不支持 SQL,甚至计算能力都比较弱(如 NoSQL),或者根本就没有计算能力(如文本),这样,数据准备计算计算无法在这个阶段实现,就要看另外一处是否可以完成了?

二处是报表呈现阶段
根据第一阶段已准备的数据,在报表模板中填入绑定格子的报表表达式或图形来呈现报表是使用报表工具开发报表的常用方式。这说明报表工具具备一定的计算能力,通过表达式可以实现分组汇总、过滤、排序,复杂一些的同比环比等计算。

但是,报表工具的计算能力是有限的。不考虑性能的情况下,单纯从数据源中读取数据到报表呈现阶段完成数据组织和报表呈现很多时候是做不到的,这也是为什么我们会在数据准备阶段进行复杂数据处理的原因了。

2. 多源关联计算
与基于单一的某个数据源进行的复杂计算不同,有时一个报表会同时连接多个数据源,多个数据源之间要混合计算,比如 MongoDB 的数据和 RDBMS 的数据关联运算,文本和 Excel 关联运算等。

这种跨异构数据源的关联无法直接通过数据源自身的能力实现,只能借助其他方法。


那报表的多样性数据源问题如何解决呢?

方法总比问题多。目前大家普遍采用两种方式来解决报表多样性数据源的问题。

借助 RDBMS
曲线救国。将多样性数据源的数据通过 ETL 灌到关系库中,再基于关系库出报表,这样就可以避免多样性数据源的问题,转而使用最熟悉的手段来解决。

不过,这种方式的局限性很大。因为之所以出现多样性数据源,是因为各种数据源有各自适用的场景,换句话说很多是关系库搞不定的,所以才会用这些数据源,比如 NoSQL 的 IO 吞吐能力很强,但计算能力较弱;文本 /Excel 文件适合做临时存储且不需要持久化到 DB;Webservice 则非常灵活,入库的动作就显得过于笨重,…

且不说多样性数据源的数据是否能转换到关系库中,由于要经过 ETL 的过程,数据的实时性如何保证?数据量较大时除了 ETL 慢,RDBMS 的容量是否够用?查询性能是否满足报表查询要求?等等这些问题都是这种方式要面对的。

采用这种方式经常是“不得已”,因为解决某类问题上了其他数据源,结果因为出报表又要用回关系库,也不知道隐含了多少辛酸。

JAVA 硬编码
通过 RDBMS 来解决报表多样性数据源的问题有这样那样的问题,那直接硬编码怎么样?通过 JAVA 硬编码对接多样性数据源为报表准备数据,毕竟硬编码想干啥就干啥。

这种方式我们之前有分析过,除了编码难、维护难的问题(报表开发人员基本搞不定),还存在无法热切换(JAVA 是编译型语言)和与业务应用紧耦合(代码要跟业务应用主程序一起打包部署)这些问题。这是我们之前聊过的: 用存储过程和 JAVA 写报表数据源有什么弊端?

硬编码似乎也不理想。


事实上,我们只需要增强报表工具的计算能力就能解决这个问题。

1. 首先,提供多样性数据源的支持,通过报表工具可以连接这些数据源,要实现这一步相对简单;

2. 其次,提供复杂计算支持,让所有的复杂计算都能在报表中完成。实现手段可以是强化呈现端的计算能力,通过报表格子表达式就能完成这些复杂计算。不过,对于绑定格子的计算(状态式计算)想要支持复杂计算并不容易,在呈现端要兼顾数据处理和数据呈现很多计算就做不了了,而且呈现格会带有很多呈现属性(字体、颜色、边框等等),带着这些属性计算会占用过多内存,严重影响计算性能。

imagepng
很难在报表呈现格表达式中完成复杂计算(功能和性能都不满足)

可以想到的另外一种方式是在报表中增加计算模块用来专门做多样性数据源混合计算,其位置与原来为报表准备数据的 SQL 和 JAVA 相当,只不过是内嵌在报表中,属于报表自身的能力,结构大概是这样

imagepng

在原有的基础上增加了计算模块,计算模块可以通过可编程计算脚本实现,但对这个脚本能力有要求:

1. 提供多样性数据源访问接口
能直接对接多样性数据源是基础,种类越丰富对多样性数据源问题解决得越充分;

imagepng

2. 支持复杂计算
当数据源自身不具备强计算能力时,通过脚本可以完成报表数据准备阶段的复杂计算逻辑,脚本提供丰富的计算类库,可以很方便地实现这类计算,最好比 SQL 和 JAVA 都简单;

3. 支持多源关联
可以跨异构数据源关联计算,这是也解决报表多样性数据源问题需要具备的重要能力;

4. 支持热切换
脚本修改后可以实时生效,而不会像 JAVA 一样需要重启应用。

当我们遇到报表多样性数据源问题需要选择报表开发技术时不妨沿着这个方向考量一下。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值