JLothar
码龄10年
关注
提问 私信
  • 博客:58,310
    58,310
    总访问量
  • 9
    原创
  • 1,004,010
    排名
  • 41
    粉丝
  • 0
    铁粉

个人简介:有学上真好= =

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-08-27
博客简介:

evilhunter222的博客

查看详细资料
个人成就
  • 获得66次点赞
  • 内容获得24次评论
  • 获得111次收藏
创作历程
  • 3篇
    2018年
  • 7篇
    2017年
TA的专栏
  • opencv
    5篇
  • 级联分类器
    1篇
  • 车辆识别
    1篇
  • 统计学
    2篇
  • 数学推导
    1篇
  • GRAPH GENERATION
  • 论文阅读
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习pytorch
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

351人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【论文阅读·2】”Why Should I Trust You?” Explaining the predictions of Any Classifier

这篇文章主要讲述了一种解释模型预测方法LIME,让人们能够理解模型背后的基本原理,有助于辅助用户什么时候信任或者不信任一个模型的预测。文章通过图像识别和文本分类的案例说明准确率有时并不是最好的评价指标,此时需要一个解释器的角色来告诉我们分类器如何做出预测等细节。作者提出了六个问题,并在两部分实验中一一解答。 关键词:解释预测方法、图像识别、文本分类1 为什么我们需要解释器?在进行机器...
原创
发布博客 2018.04.22 ·
11161 阅读 ·
25 点赞 ·
5 评论 ·
61 收藏

【论文阅读·1】EvoGraph: An Effective and Efficient Graph Upscaling Method for Preserving Graph Properties

有不合理的地方还请大家指出批评!刚开始学graph generation~本文主要介绍EvoGraph方法,至于Kronecker和GSCALER将在其他博客中介绍任务:graph upscaling 关键词:graph generation、edge attachment、hashing technology、preserving graph properties摘要本篇文...
原创
发布博客 2018.04.08 ·
702 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

多元线性回归中最优回归系数推导过程

来源于机器学习实战中p138,求解线性回归的回归系数w的最优解,涉及到矩阵求导等知识,推导过程中还对矩阵求导的分子、分母布局进行说明,部分参考链接如下: 1.https://en.wikipedia.org/wiki/Matrix_calculus#Denominator-layout_notation(wiki矩阵求导说明) 2.http://f.dataguru.cn/thread-5984
原创
发布博客 2018.01.10 ·
17167 阅读 ·
10 点赞 ·
4 评论 ·
17 收藏

统计学术语及解释(二)

部分统计学术语英汉解释(二)
原创
发布博客 2017.09.25 ·
1271 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

统计学术语及解释(一)

部分统计学术语英汉解释(一):备择假设 ,Alternative hypothesis :参数除零假设外中所标之外的其他可能性。 方差分析,Analysis of variance:用于分析一个或多个分类型自变量与一个数值型因变量之间关系的统计方法。 方差分析表,Analysis of variance table:显示平方和、自由度、均方、F-比和p-值的表格。 平均绝对偏差,Averag
原创
发布博客 2017.09.14 ·
5321 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

车辆检测xml文件及效果展示

发布资源 2017.07.13 ·
rar

车辆检测效果演示及xml文件

发布资源 2017.07.13 ·
rar

【转载】【图像处理】Haar Adaboost 检测自定义目标(视频车辆检测算法代码)

转载出自于:http://blog.csdn.net/zhuangxiaobin/article/details/25476833阅读须知本博客涉及到的资源:正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197负样本:http://download.csdn.net/detail/zhuangxiaobin/7326205训练和检测工具
转载
发布博客 2017.04.12 ·
1113 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

opencv学习(一) 简单的背景差法实现车辆检测

本文的环境为opencv3.0+vs13,使用库函数简单的实现了背景差方法下的车辆检测。PS:但检测的效果并不理想,所以改用haar+adaboost的方法去做检测了,但有幸看到国外一个Urban Track 的项目,介绍里提及使用背景差实现了检测和跟踪,本人还没看完下面贴出链接,感兴趣的可以去研究下:https://www.jpjodoin.com/urbantracker/基本的思路都体现在注释
原创
发布博客 2017.04.07 ·
5908 阅读 ·
5 点赞 ·
2 评论 ·
19 收藏

opencv学习 级联分类器检测运动车辆 demo

Haar AdaBoost 车辆检测
原创
发布博客 2017.03.31 ·
7272 阅读 ·
13 点赞 ·
10 评论 ·
22 收藏

opencv学习 视频帧截取

做视频检测的时候经常需要对视频进行图像截取,可以利用opencv进行简单的截图操作,但截取速率比较慢,适用于几千张左右的截图,熟悉matlab的请无视= =代码如下:#include <cstring> #include <opencv2\opencv.hpp>#include "cv.h"#include "highgui.h"using namespace std;int main()
原创
发布博客 2017.03.24 ·
5935 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

opencv 批量 随机截取图片

第一篇博客就随便写点吧…正在做车辆检测的毕设,需要获取5000+的负样本图片,手动截取不现实就随机生成一些,下面是代码简单易懂就不多解释啦#include <opencv2\opencv.hpp>#include <iostream>#include <cstring>#include<stdio.h>#include<stdlib.h>#include <time.h>//#defin
原创
发布博客 2017.03.23 ·
2463 阅读 ·
5 点赞 ·
1 评论 ·
4 收藏