anaconda2和anaconda3共存,导致conda环境混乱,安装模块错误 CondaEnvironmentNotFoundError: Could not find environment: C:\ProgramData\Anaconda2\envs\anaconda3\envs\anaconda3 .You can list all discoverable environments with `conda info --envs`.anaconda2和anac
conda创建新环境,安装tensorflow,启动对应环境的spyder,并安装新的packages 创建新的环境,并安装tensorflow# Python 3.5 $ conda create -n tensorflow python=3.5$ source activate tensorflow $ conda install -c conda-forge tensorflow 启动对应tensorflow环境的spyder# 激活$ source activate
【编程练习】打印1到n位数 // 考虑大数,超过int,超过long能表达的范围// 用大小为n的数组来表示每一位数public static void printMax(int n) { // n位数组全排列 if (n <= 0) return; int[] num = new int[n]; printMax(num, n, 0)
【特征工程】连续数据特征离散化的方法 离散化背景连续数据经常采用离散化处理之后再放入模型。离散化可以理解为提取特征的过程,比如在LR模型,由于是广义线性模型表达能力有限,因此通过特征离散化来了提高非线性学习能力主要方法等距离散取值范围均匀划成n等份,每份的间距相等等频离散均匀分为n等份,每份内包含的观察点数相同优化离散大致有两类方法: 1. 卡方检验方法:(统计样本的实际观测值与理论推断值之间的偏离程度,卡方值越大,越不符合;卡方值越
通过mnist数字识别理解卷积神经网络 背景:基于学习的目的,想要熟悉深度学习的算法,实现DNN和CNN的代码 任务描述:识别mnist数据集中的手写数字,图像大小28*28,灰度 版本区别: 代价函数 激活函数 输出层 参数初始化 正则项 准确率 network2: 交叉熵 sigmoid sigmoid w-(0,1/√n_in) 2范数 30个,95.45 100个,98% network3
单链表环的系列问题,及图解 给定一个单链表,只给出头指针h:1、如何判断是否存在环?如果有两个头结点指针,一个走的快,一个走的慢,那么若干步以后,快的指针总会超过慢的指针一圈。2、如何知道环的长度?第一次相遇(超一圈)时开始计数,第二次相遇时停止计数。3、如何找出环的连接点在哪里?相遇点C到连接点的距离=头指针到连接点的距离,因此,分别从相遇点C、头指针A开始走,相遇的那个点就是连接点B。
【编程练习】单链表逆序Java实现 取出原始链表的第一个节点A,然后将该节点作为新链表的头节点。对原始链表遍历一次,就完成了这个工作,所以这个算法的复杂度为O(n)。old_head和 new_head分别表示原始链表的头节点和新链表的头节点。public class LinkedListReverse { static class ListNode{ int data; ListNode ne
【推荐系统】协同过滤(CF)算法详解,item-base,user-based,SVD,SVD++ 协同过滤算法协同过滤(Collaborative Filtering, 简称 CF)是利用集体智慧的一个典型方法。要理解什么是协同过滤 ,首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。CF算法是推荐算法的一个大分支,基本思想是推荐相似
【推荐系统】特征值分解(谱分解)和奇异值分解(SVD),即在PCA上的应用 特征值分解(谱分解EVD)和奇异值分解(SVD),即在PCA上的应用1. 概念特征值分解和奇异值分解在机器学习领域都有着广泛的应用。两者有着很紧密的关系,二者的目的都是一样,就是提取出一个矩阵最重要的特征。1.1特征值如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量(实对称矩阵不同的特征值对应的特征向量是相互
【机器学习】交叉验证,K折交叉验证的偏差和方差分析 交叉验证 部分参考:模型选择中的交叉验证方法综述,山西大学,范永东(这是一篇硕士论文,原文内容有点啰嗦,存在一些错误。本文对其交叉验证部分校对整理)交叉验证是一种通过估计模型的泛化误差,从而进行模型选择的方法。没有任何假定前提,具有应用的普遍性,操作简便, 是一种行之有效的模型选择方法。1. 交叉验证的产生人们发现用同一数据集,既进行训练,又进行模型误差估计,对误差估计的很不准确,这就是所说的
【机器学习】梯度下降法的证明 梯度下降法,又称最速下降法、梯度法无约束最优化领域中最简单的算法下降后的函数值,寻找下降的方向d1. 名字释义最速下降法只使用目标函数的一阶导数信息,并且,它的本意是取目标函数值“最快下降”的方向作为搜索方向。2. 函数值下降最快的方向先说结论:沿负梯度方向 d=−gk ,函数值下降最快。证明:对做一节泰勒展开:PS:一阶泰勒展开式一般
【机器学习】Goldstein-Armijo line-search http://note.youdao.com/noteshare?id=55778bc1cfe1e8e4cac3c58cf8d9282c&sub=0F00E96EFAC448B68A39B3C100F22137