evolone
码龄12年
关注
提问 私信
  • 博客:479,084
    479,084
    总访问量
  • 98
    原创
  • 914,759
    排名
  • 388
    粉丝
  • 4
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2012-08-16
博客简介:

evolone的专栏

博客描述:
每天一小步
查看详细资料
个人成就
  • 获得259次点赞
  • 内容获得111次评论
  • 获得1,113次收藏
创作历程
  • 2篇
    2020年
  • 12篇
    2019年
  • 20篇
    2018年
  • 7篇
    2017年
  • 8篇
    2016年
  • 49篇
    2015年
成就勋章
TA的专栏
  • AI芯片
    16篇
  • SVN
    1篇
  • git hub
    2篇
  • cadence cmd
    1篇
  • C++
    23篇
  • leetcode
    15篇
  • 软件使用技巧
    4篇
  • PHP
    1篇
  • MySQL
    1篇
  • Verilog
    7篇
  • java
    2篇
  • eclipse
    1篇
  • 人工神经网络
    10篇
  • Python
    3篇
  • spark
  • HTML
    1篇
  • JavaScript
    1篇
  • Linux
    7篇
  • UVM
    2篇
  • CPU
    2篇
  • IC设计
    7篇
  • VHDL
    2篇
  • Tensorflow
    2篇
  • 深度学习
    2篇
  • AI芯片
    5篇
  • SystemVerilog
    3篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

linux 命令 替换字符串

如何批量替换字符串?linux系统自带有shell脚本,比如bash.一些命令可以直接起到替换字符串的作用,非常方便!一起来学习下!sed这个命令就是替换字符串的作用。怎么用呢?想替换某个文本中的某个字符串为别的字符串。好办!1 sed ‘s/search_string/replace_string/’ a.v上面命令的作用是,在文件a.v中,每一行查找第一个“search_string”,并替换成“replace_string”字母s代表这是替换命令。不会把替换结果写入a.v。
原创
发布博客 2020.12.08 ·
3091 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

SVN常用命令

目录SVN 常用命令1、下载SVN远程文件库2、更新文件SVN 常用命令1、下载SVN远程文件库svn checkout xxx(远程目录地址)比如svn checkout https://1.2.3.4.5.6.7:8/a/b/c/ 回车2、更新文件svn update 更新当前目录下的所有文件svn update a.v 更新当前目录下的文件a.v到最新版本...
原创
发布博客 2020.12.08 ·
378 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

System Verilog的task与function,以及task的接口信号与function的返回值

最近写代码,调试过程中,踩了无数坑,摘取一些作为记录。以备之后查看。1.Task和function不同点:Task,只用来仿真调试,可以有延迟。Function,可以综合成一堆组合电路,所以,不能加延迟。相同点:内部信号包括global和local都是static的,所以就算有初值,也必须每次用的时候,重新赋值。(这与C语言等高级语言不同,C等语言,内部变量,都不是static,每次...
原创
发布博客 2019.11.15 ·
3388 阅读 ·
0 点赞 ·
1 评论 ·
7 收藏

github 修改远程仓库地址

首先查看github远程仓库的地址,比如:abc.git那么在仓库对应的本地文件夹abc中,输入命令:git remote set-url origin abc.git回车即可。
原创
发布博客 2019.11.01 ·
1747 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

github下载新的仓库

当需要下载新的仓库(地址:http://a/aa)。首先,在本地的某个路径下,建立一个文件夹a(你想要放置新的仓库的地方);然后,进入文件夹a,输入命令git clone http://a/aa/aa.git回车就可以了。...
原创
发布博客 2019.10.25 ·
299 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cadence关于延迟的命令

在 irun 命令行中加上-define sequdp_delay可以让仿真器认为信号经过器件有延迟。比如有两个信号a和b。a有3个bufferb有1个buffer那么,会认为同一个信号经过a和b,a的延迟大,b的延迟小。...
原创
发布博客 2019.10.25 ·
2453 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

AI芯片:华为Ascend(昇腾)910结构分析

前几天,华为发布了最新的AI芯片,号称目前全球最强,算力吊打谷歌TPU3和英伟达Tesla V100。这么震撼人心,必须挺一波!!华为牛逼!!(这句5毛)下面来具体分析一下。一、昇腾910的整体结构我去华为官网查了一下,然后就得到这么一点信息:(之后截图补上,这是地址:https://e.huawei.com/cn/products/cloud-computing-dc/atlas/...
原创
发布博客 2019.08.26 ·
32833 阅读 ·
10 点赞 ·
3 评论 ·
45 收藏

AI芯片:清华天机芯片内部结构分析(TianJic)

最近,清华七年磨一剑,放出一大招,文章直接登上NATURE的封面。《Towards artificial general intelligence with hybrid Tianjic chip architecture》。文章介绍了整个TianJic的结构及具体应用。本文延续以往一贯的风格,仅仅研究文章中公开的内部计算架构。一、整体思路人工智能通常有两个主要方向:(1)一种是面向计...
原创
发布博客 2019.08.24 ·
13230 阅读 ·
6 点赞 ·
1 评论 ·
36 收藏

AI芯片:华为昇腾(ASCEND)310结构分析

华为的麒麟SOC中使用的是寒武纪的AI芯片模块。但是,华为自己也推出了自有的AI芯片架构。本文根据华为公布的信息,简单分析下其结构。所有信息都来自互联网,来自华为的官方信息。感谢华为的分享!!首先看看,华为发布的一张海报,如下图所示。整体采用华为自研的达芬奇架构,采用高性能的3D Cube计算引擎。因为兴趣及工作领域的因素,我更关注其芯片内部的AI 卷积核的设计。从海报中能够看出...
原创
发布博客 2019.05.18 ·
19361 阅读 ·
5 点赞 ·
5 评论 ·
34 收藏

linux中如何创建及复制文件/文件夹的软链接?

在Windows中有快捷方式。对应的,在linux中有软链接。如何生成软链接呢?命令:ln -s a b其中,a代表想要进行软链接的单个原始文件,如果是多个文件,那么就包括文件路径及文件夹名。b 就是给软连接重新命名。比如:(1)单个文件ln -s a.c b(2)包含多个文件的文件夹ln -s c/a bc/a:代表C盘下的a文件夹...
原创
发布博客 2019.04.20 ·
7756 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

AI芯片:SystemVerilog Debug常用的参考数据--16进制数/半精度浮点数

作为AI芯片设计验证工程师,会用到SystemVerilog/Verilog等硬件语言去写设计代码。写好设计代码后,都会自己先简单测试一下。目前的AI芯片,不再选择传统的单精度和双精度浮点数作计算,而是选择半精度浮点数,如果做了量化,还会选用8bit的定点数。以下是一些常用到的测试数据。1. 16进制数16进制数:十进制数0000(0):00001(1):10010(2):200...
原创
发布博客 2019.03.29 ·
1797 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

SystemVerilog验证编译错误:关于动态变量的赋值问题

今天遇到一个编译错误,如下:Reference to automatic variable and elements of dynamic variables is not allowed outside procedual blocks.对应报错的那行语句是:assign a = model.path.a.value;其中,model是对应的寄存器模型。因为model.path.a...
原创
发布博客 2019.03.12 ·
2764 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

AI芯片:清华大学可重构混合神经网络处理器结构分析

清华大学微纳电子系的尹首一等人于2018年发表论文《A 1.06-to-5.09 TOPS/W Reconfigurable Hybrid-Neural-Network Processor for Deep Learning Applications 》,介绍了他们的面向深度学习人工智能算法的AI芯片架构及性能参数。这是大学的AI芯片,代表了学术界的一种想法。下面分析一下其内部结构。当然,主要...
原创
发布博客 2019.02.16 ·
4140 阅读 ·
6 点赞 ·
2 评论 ·
32 收藏

AI芯片:寒武纪DianNao,英伟达NVDLA和谷歌TPU1的芯片运算架构对比分析

前面几篇博客分别分析了目前市面上能够找到的各家AI芯片的结构。下面做一个阶段性的对比分析及总结。AI芯片运算架构对比整体来看,NVDLA的架构与寒武纪的DianNao比较像。所以,单位资源的性能应该是差不多的。二者性能的区别,就看资源的多寡了。寒武纪的DianNao,共16个PE,每个PE可以计算一个神经元,每个周期最多计算出16个神经元。NVDLA共2个core。每个core有8个m...
原创
发布博客 2019.01.18 ·
8727 阅读 ·
12 点赞 ·
4 评论 ·
39 收藏

AI芯片:英伟达NVDLA结构分析

英伟达开源了深度学习硬件架构:NVDLA。包括完整的源代码:Verilog代码,C_Model代码,以及验证平台代码。英伟达官网上也有详细的文档。非常值得学习推敲。作为从业者,我更加关注NVDLA卷积核的实现方式。不过,文档中并没有详细的说明。于是,直接看代码,分析结构。好记性不如烂笔头。顺便将看代码的过程中学习到的东西,记录下来。1.NVDLA硬件架构...
原创
发布博客 2018.11.28 ·
18221 阅读 ·
25 点赞 ·
19 评论 ·
114 收藏

SystemVerilog计算规则:你真的懂赋值规则吗?

最基础的,往往最容易出错。最近,用到了SystemVerilog去写计算,然后,各种赋值规则,让人眼花缭乱,特此记录。int inta, intb, intc, intd;assign inta = -12;// 2进制:1111_1111_1111_1111_1111_1111_1111_0100 10进制:-12assign intb = -'d12;// ...
原创
发布博客 2018.11.22 ·
6342 阅读 ·
4 点赞 ·
0 评论 ·
19 收藏

磨刀不误砍柴工:开发Model,辅助设计DUT

论开发Model对设计DUT的重要性最近在设计一个模块。时间紧,任务重。一开始,觉得为了节约时间,没有先开发Model,直接去写DUT。整个模块分成三部分。在分别完成三个部分时,由于并不十分复杂,故都是手算的计算结果,然后验证DUT的功能。但是在三个模块一起联合调试时,由于前期理解不充分,设计需要修改,然后计算结果就变了,造成之前手算的结果报废。如果重新手算,就增加了不少的工作量,而且...
原创
发布博客 2018.10.19 ·
644 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

verilogHDL,system Verilog代码的多驱动问题

信号多驱动问题0.起因1.现象起源2.原因分析3.解决办法4.思维拓展(1)两个always块的时钟不同,条件互斥;(2)时钟相同,但是条件不互斥,可能发生冲突;(3)时钟不同,且条件不互斥;0.起因最近在项目设计时,遇到了信号多驱动问题。记录下来,提醒自己,方便他人。1.现象起源最近在设计YOLO—V3的模块逻辑。在准备上FPGA时,综合报错:信号多驱动错误。2.原因分析查看代码...
原创
发布博客 2018.09.27 ·
12081 阅读 ·
14 点赞 ·
7 评论 ·
48 收藏

AI芯片:深鉴科技基于深度压缩的ESE方案分析

二、ESE这篇论文,将上文的Deep Compression技术在FPGA上具体实现。 为了达到更高的效率,本文从三个层次提高计算效率:算法优化,编译高效的调度程序,硬件加速。如Figure 2所示。 本文设计的语音识别系统中,最占用运算资源和存储资源的是LSTM算法。故本文着重优化LSTM算法的计算。 LSTM算法的数据流如图Figure 4所示。的确比较复杂。其中涉及到许多的...
原创
发布博客 2018.09.10 ·
2179 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

AI芯片:寒武纪Cambricon-X结构分析

五、Cambricon-X Cambricon-X是针对稀疏系数的矩阵计算架构。 深鉴科技的韩松等人的研究发现,可以将传统的深度学习网络模型的许多权重系数去掉,甚至能去掉90%以上,而并不影响模型的计算精度。如下图所示。 目前的深度学习模型的权重系数太多,造成需要的乘法计算非常多,计算时间长,速度慢。 相信,未来的模型会更加复杂,需要的计算更多,时间更久。 未来把模型进行系数删减,就...
原创
发布博客 2018.09.10 ·
15019 阅读 ·
4 点赞 ·
12 评论 ·
38 收藏
加载更多