Android上强大的图表库MPAndroidChart介绍

转自《解析Android上强大的图表库MPAndroidChart》

2019-03-11 09:32:06

阅读数 12

评论数 0

训练数据集与TFRecord互相转换

转载自《训练数据集与TFRecord互相转换的两种方式》 TensorFlow使用TFRecord格式来统一存储数据,该格式可以将图像数据、标签信息、图像路径以及宽高等不同类型的信息放在一起进行统一存储,从而方便有效的管理不同的属性。 将训练数据集转成TFRecord 这里采用的数据集为目前...

2019-02-21 10:42:53

阅读数 42

评论数 0

机器学习总结——前言

机器学习任务类型主要分为两大类:         • 监督学习(Supervised Learning)         – 分类 (Classification)         – 回归 (Regression)         – 排序 (Ranking)         • 非监督学习 (...

2019-02-14 16:19:24

阅读数 32

评论数 0

Tensorflow入门教程

《比官方更简洁的Tensorflow入门教程》

2019-01-13 10:09:26

阅读数 38

评论数 0

sklearn 中的MiniBatchKMeans(聚类)使用

1、前期准备 #导入必要的工具包 import pandas as pd import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.model_selection import train_test_...

2018-12-31 10:18:26

阅读数 126

评论数 0

sklearn的PCA使用

1、数据准备 #导入必要的工具包 import pandas as pd import numpy as np from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.d...

2018-12-31 10:09:35

阅读数 356

评论数 0

LightGBM使用指南

1、准备 import lightgbm as lgbm import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV from sklearn.metrics import l...

2018-12-30 11:18:35

阅读数 102

评论数 0

Pandas速查手册

本文转自《Pandas速查手册中文版》 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。 如果你想学习Pandas,建议先...

2018-12-27 15:22:38

阅读数 40

评论数 0

决策树参数调优建议

建议一: 三个最重要的参数为:树的数目、树的深度和学习率。建议参数调整策略为: – 采用默认参数配置试试 – 如果系统过拟合了,降低学习率 – 如果系统欠拟合,加大学习率 建议二: – n_estimators和learning_rate:固定n_estimators为100(数目不大,因为...

2018-12-25 20:57:27

阅读数 486

评论数 0

sklearn中XGBoost的使用

1、数据准备 from xgboost import XGBClassifier import xgboost as xgb import pandas as pd import numpy as np from sklearn.model_selection import GridSe...

2018-12-25 20:43:19

阅读数 147

评论数 0

sklearn中随机森林的使用

1、数据准备与《sklearn中决策树的使用》中相同,这里不再累述、 2、使用步骤 from sklearn.ensemble import RandomForestClassifier model_RR=RandomForestClassifier() model_RR.fit(X_tra...

2018-12-25 10:39:33

阅读数 95

评论数 0

sklearn中决策树的GridSearchCV参数调优

决策树的超参数有: max_depth(树的深度) max_leaf_nodes(叶子结点的数目) max_features(最大特征数目) min_samples_leaf(叶子结点的最小样本数) min_samples_split(中间结点的最小样本树) min_weight_fr...

2018-12-25 10:34:12

阅读数 488

评论数 0

sklearn中决策树的使用

1、数据准备 import pandas as pd import numpy as np from matplotlib import pyplot as plt from sklearn.model_selection import GridSearchCV from sklearn.me...

2018-12-25 09:54:28

阅读数 150

评论数 0

人工智能—XGBoost使用指南

步骤:             1. 读取数据--> DMatrix             2. 设置参数             3. 模型训练:train/cv                 3.1: train with 在校验集上early stop      ...

2018-12-22 10:06:50

阅读数 106

评论数 0

Logistic 回归—SVM正则参数调优操作笔记

1、准备 # 首先 import 必要的模块 import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV #竞赛的评价指标为logloss #from sklearn.me...

2018-12-17 10:56:59

阅读数 83

评论数 0

Logistic 回归—LogisticRegressionCV实现参数优化

1、准备 # 首先 import 必要的模块 import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV #竞赛的评价指标为logloss from sklearn.m...

2018-12-16 10:02:05

阅读数 1132

评论数 0

Logistic 回归—网格搜索最优参数笔记

1、准备 # 首先 import 必要的模块 import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV #竞赛的评价指标为logloss from sklearn.met...

2018-12-16 09:47:46

阅读数 595

评论数 0

人工智能—线性回归模型笔记

1、准备阶段 import pandas as pd %matplotlib inline data = pd.read_csv("boston_housing.csv") data.head() data.isnull().sum() # 从原始数据中...

2018-12-12 09:29:58

阅读数 5000

评论数 0

人工智能—数据探索操作笔记

1、读取数据 import pandas as pd data = pd.read_csv("boston_housing.csv") #获取前五条数据 data.head()  # 数据基本信息 data.info() # 查看是否有空值 data.is...

2018-12-11 16:05:00

阅读数 161

评论数 0

概率论笔记 1、事件的概率

注:理解概率的最主要也最重要的工具是文氏图 概率:概率论上把重复多次试验后事件出现的频率来估计事件的概率。 基本事件:单一试验所出现的试验结果,比如:抛骰子,{点数为1}这一命题为基本事件 事件:一个或多个基本事件构成的集合。 古典概率:(1)基本事件的概率是等同的;(2)试验结果有限 ...

2018-10-18 18:08:05

阅读数 85

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭