枫-麟
码龄13年
关注
提问 私信
  • 博客:90,854
    90,854
    总访问量
  • 21
    原创
  • 507,012
    排名
  • 25
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2011-08-01
博客简介:

evolution23的博客

查看详细资料
个人成就
  • 获得29次点赞
  • 内容获得12次评论
  • 获得240次收藏
  • 代码片获得301次分享
创作历程
  • 2篇
    2022年
  • 2篇
    2021年
  • 4篇
    2019年
  • 19篇
    2018年
  • 1篇
    2016年
成就勋章
TA的专栏
  • 云原生
    3篇
  • JNI
    2篇
  • 概率统计
    1篇
  • 机器学习操作
    15篇
  • 人工智能
    16篇
  • 机器学习理论
    2篇
  • Android
    1篇
  • 期货
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ceph 数据清除

lsblk -fyum install gdisk# Zap the disk to a fresh, usable state (zap-all is important, b/c MBR has to be clean)# You will have to run this step for all disks.sgdisk --zap-all /dev/sda# Clean hdds with dddd if=/dev/zero of=/dev/sda bs=1M count=10
原创
发布博客 2022.04.12 ·
1944 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

删除并清理rancher节点

#停止所有docker容器docker stop `docker ps |awk {'print $1'}|grep -v CONTAINER`# 删除所有容器docker rm -f $(docker ps -qa)# 删除所有容器卷docker volume rm $(docker volume ls -q)# 删除所有的镜像,慎用#docker rmi -f `docker images|awk {'print $3'}`# 停止服务systemctl disable kube..
转载
发布博客 2022.04.12 ·
1807 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

rancher +k8s 安装 rook ceph

官网:https://www.rook.io/前提条件:已部署完成 rancher+k8s系统,没有完成的请移步《Centos7 通过RKE 部署 高可用k8s+rancher》一、镜像下载,我们需要将安装所需要的镜像从阿里云下载到本地(重要)对应的版本号可查看 rook ceph中的operator.yaml配置文件docker image pull rook/ceph:v1.6.7docker pull registry.aliyuncs.com/it00021hot/ce.
原创
发布博客 2021.07.20 ·
950 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

Centos7 通过RKE 部署 高可用k8s+rancher

前言:这里的rke rancher docker 是安装最新版的,如果需要安装特定版本,一些细节请自行百度和查询官网环境介绍操作系统:centos7硬件配置:内存8GB以上 cpu2核以上 硬盘大于30G系统架构:3个节点,每个节点同时承担master和work两种角色10.9.1.200 rke-node110.9.1.201 rke-node210.9.1.201 rke-node3操作步骤(一)前期准备注意以下操作需要在所有节点以root用...
转载
发布博客 2021.07.20 ·
967 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Android上强大的图表库MPAndroidChart介绍

转自《解析Android上强大的图表库MPAndroidChart》
转载
发布博客 2019.03.11 ·
245 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

训练数据集与TFRecord互相转换

转载自《训练数据集与TFRecord互相转换的两种方式》TensorFlow使用TFRecord格式来统一存储数据,该格式可以将图像数据、标签信息、图像路径以及宽高等不同类型的信息放在一起进行统一存储,从而方便有效的管理不同的属性。将训练数据集转成TFRecord这里采用的数据集为目前正在做的项目的数据集,共包含两个目标文件夹(分别包含100幅图像)及对应的label.txt,labe...
转载
发布博客 2019.02.21 ·
1348 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

机器学习总结——前言

机器学习任务类型主要分为两大类:        • 监督学习(Supervised Learning)        – 分类 (Classification)        – 回归 (Regression)        – 排序 (Ranking)        • 非监督学习 (Unsupervised Learning)        – 聚类 (Clustering)  ...
原创
发布博客 2019.02.14 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow入门教程

《比官方更简洁的Tensorflow入门教程》
转载
发布博客 2019.01.13 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

sklearn 中的MiniBatchKMeans(聚类)使用

1、前期准备#导入必要的工具包import pandas as pdimport numpy as npfrom sklearn.cluster import MiniBatchKMeansfrom sklearn.model_selection import train_test_splitfrom sklearn import metricsfrom sklearn.dec...
原创
发布博客 2018.12.31 ·
5516 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

sklearn的PCA使用

1、数据准备#导入必要的工具包import pandas as pdimport numpy as npfrom sklearn import svmfrom sklearn.model_selection import train_test_splitfrom sklearn.decomposition import PCAimport time#读取训练数据和测试数据t...
原创
发布博客 2018.12.31 ·
2401 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

LightGBM使用指南

1、准备import lightgbm as lgbmimport pandas as pd import numpy as npfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import log_lossfrom matplotlib import pyplotimport seabor...
原创
发布博客 2018.12.30 ·
2571 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

Pandas速查手册

本文转自《Pandas速查手册中文版》对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。如果你想学习Pandas,建议先看两个网站。(1)官网:Python Data Analysis Library(2)十分钟入...
转载
发布博客 2018.12.27 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

决策树参数调优建议

建议一:三个最重要的参数为:树的数目、树的深度和学习率。建议参数调整策略为:– 采用默认参数配置试试– 如果系统过拟合了,降低学习率– 如果系统欠拟合,加大学习率建议二:– n_estimators和learning_rate:固定n_estimators为100(数目不大,因为树的深度较大,每棵树比较复杂),然后调整learning_rate– 树的深度max_depth:从...
原创
发布博客 2018.12.25 ·
9031 阅读 ·
3 点赞 ·
1 评论 ·
46 收藏

sklearn中XGBoost的使用

1、数据准备from xgboost import XGBClassifierimport xgboost as xgbimport pandas as pd import numpy as npfrom sklearn.model_selection import GridSearchCVfrom sklearn.model_selection import Stratifi...
原创
发布博客 2018.12.25 ·
3357 阅读 ·
0 点赞 ·
1 评论 ·
9 收藏

sklearn中XGBoost的使用

1、数据准备from xgboost import XGBClassifierimport xgboost as xgbimport pandas as pd import numpy as npfrom sklearn.model_selection import GridSearchCVfrom sklearn.model_selection import Stratifi...
原创
发布博客 2018.12.25 ·
3357 阅读 ·
0 点赞 ·
1 评论 ·
9 收藏

sklearn中随机森林的使用

1、数据准备与《sklearn中决策树的使用》中相同,这里不再累述、2、使用步骤from sklearn.ensemble import RandomForestClassifiermodel_RR=RandomForestClassifier()model_RR.fit(X_train,y_train)y_prob = model_RR.predict_proba(X_test...
原创
发布博客 2018.12.25 ·
641 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

sklearn中决策树的GridSearchCV参数调优

决策树的超参数有:max_depth(树的深度) max_leaf_nodes(叶子结点的数目) max_features(最大特征数目) min_samples_leaf(叶子结点的最小样本数) min_samples_split(中间结点的最小样本树) min_weight_fraction_leaf(叶子节点的样本权重占总权重的比例) min_impurity_split(最...
原创
发布博客 2018.12.25 ·
6812 阅读 ·
1 点赞 ·
0 评论 ·
34 收藏

sklearn中决策树的使用

1、数据准备import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import accuracy_scorefrom sklearn.metrics im...
原创
发布博客 2018.12.25 ·
1853 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

人工智能—XGBoost使用指南

步骤:            1. 读取数据--> DMatrix            2. 设置参数            3. 模型训练:train/cv                3.1: train with 在校验集上early stop                3.2: cv            4. 预测   1、读取数据XGBoost可以加...
原创
发布博客 2018.12.22 ·
941 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏

人工智能—XGBoost使用指南

步骤:            1. 读取数据--> DMatrix            2. 设置参数            3. 模型训练:train/cv                3.1: train with 在校验集上early stop                3.2: cv            4. 预测   1、读取数据XGBoost可以加...
原创
发布博客 2018.12.22 ·
941 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏
加载更多