526. Beautiful Arrangement

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:

1. The number at the ith position is divisible by i.
2. i is divisible by the number at the ith position.

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation:

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.


Note:

1. N is a positive integer and will not exceed 15.

DFS或回溯算法求解。

class Solution {
private int cnt = 0;
private List<Integer> list = new LinkedList<>();
private boolean[] visited;
public int countArrangement(int N) {
visited = new boolean[N+1];
backTracing(N, 1);
return cnt;
}
public void backTracing(int N, int begin){
if (begin > N+1){
return ;
}
if (begin == N+1){
cnt ++;
return;
}
for (int i = 1; i <= N; ++ i){
if (visited[i]){
continue;
}
if (list.size() != 0 && (i%(list.size()+1)) != 0 && ((list.size()+1) % i) != 0){
continue;
}
visited[i] = true;
}