526. Beautiful Arrangement

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:

  1. The number at the ith position is divisible by i.
  2. i is divisible by the number at the ith position.

 

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation: 

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

Note:

  1. N is a positive integer and will not exceed 15.

DFS或回溯算法求解。

在生成全排列的过程中判断是否满足题目要求的两个条件即可,程序如下所示:

class Solution {
    private int cnt = 0;
    private List<Integer> list = new LinkedList<>();
    private boolean[] visited;
    public int countArrangement(int N) {
        visited = new boolean[N+1];
        backTracing(N, 1);
        return cnt;
    }
    public void backTracing(int N, int begin){
        if (begin > N+1){
            return ;
        }
        if (begin == N+1){
            cnt ++;
            return;
        }
        for (int i = 1; i <= N; ++ i){
            if (visited[i]){
                continue;
            }
            if (list.size() != 0 && (i%(list.size()+1)) != 0 && ((list.size()+1) % i) != 0){
                continue;
            }
            visited[i] = true;
            list.add(i);
            backTracing(N, begin+1);
            list.remove(list.size() - 1);
            visited[i] = false;
        }
    }
}

 

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/excellentlizhensbfhw/article/details/81592480
个人分类: LeetCode
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭