Burnside引理和Polya定理

数学、数论 专栏收录该内容
39 篇文章 0 订阅

Burnside 引理

A A A B B B 为有限集合, X X X A → B A\to B AB 的一个映射集合, G G G A A A 上的一个置换群, X / G X/G X/G 表示置换群 G G G 作用在 X X X 上产生的所有映射的等价类的集合(若 X X X 中两个映射经过 G G G 中的置换作用后相等, 那么这两个映射属于同一个等价类),则:
∣ X / G ∣ = 1 ∣ G ∣ ∑ g ∈ G ∣ X g ∣ |X/G|=\dfrac{1}{|G|}\sum_{g\in G}|X^g| X/G=G1gGXg
其中 X g = { x ∣ x ∈ X , g ( x ) = x } X^g=\{x|x\in X ,g(x)=x\} Xg={xxX,g(x)=x},即 g g g 作用在 X X X 上的不动点。

可以翻译为:等价类个数=置换群中每个置换的不动点的平均数。

证明不会,但 @Rosmontis 那里有。

Polya 定理

对于 X X X A → B A\to B AB 的所有映射的集合的情况,我们有:
∣ X / G ∣ = 1 ∣ G ∣ ∑ g ∈ G ∣ B ∣ c ( g ) |X/G|=\dfrac{1}{|G|}\sum_{g\in G}|B|^{c(g)} X/G=G1gGBc(g)
其中 c ( g ) c(g) c(g) 表示置换 g g g 能拆分成的不相交的循环置换的数量,即置换 g g g 中的环的数量。

解释起来很简单,我们只是把 Burnside 引理中的 ∣ X g ∣ |X^g| Xg 改成了 ∣ B ∣ c ( g ) |B|^{c(g)} Bc(g),这是因为 Burnside 引理中 g ( x ) = x g(x)=x g(x)=x 的充要条件显然是 g g g 中的每一个环内的所有元素都对应的是 B B B 中的同一个元素。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值