自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 【SCOI2014】方伯伯的商场之旅(数位DP)

首先考虑单个数怎么做。肯定是把每一位上的数都移到同一位(称其为决策点)上去。假设当前数的决策点在第 ppp 位,这一位上数字是 xxx,这一位左边的数字和为 lll,这一位右边的数字和为 rrr。那么决策点向左移对代价的新的贡献为 r+x−lr+x-lr+x−l,向右移对答案的新的贡献为 l+x−rl+x-rl+x−r。由此也可以看出代价关于决策点是一个单峰函数,因为不断向左移的过程中 r+xr+xr+x 一直减小,lll 一直增大,新的贡献不断减小。那么决策点不再移动当且仅当 r+x−l≥0r+

2021-07-24 11:47:33 6

原创 【POI2011】Lightning Conductor/【JSOI2016】灯塔(决策单调性优化dp)

首先进行变形:aj≤ai+p−∣i−j∣p≥max⁡j=1n(aj+∣i−j∣)−ai\begin{aligned}a_j&\leq a_i+p-\sqrt{|i-j|}\\p&\geq \max_{j=1}^n\left(a_j+\sqrt{|i-j|}\right)-a_i\end{aligned}aj​p​≤ai​+p−∣i−j∣​≥j=1maxn​(aj​+∣i−j∣​)−ai​​把 ∣i−j∣|i-j|∣i−j∣ 拆为 max⁡(i−j,j−i)\max(i-j,j

2021-07-23 19:28:18 13

原创 【XSY3270】Domino Colorings(轮廓线dp,状压)

若已经知道了每个格子的颜色,我们可以用轮廓线 DP(类似插头 DP)判断棋盘是否能被多米诺骨牌填满,设 dp[S]dp[S]dp[S] 表示是否存在某种填法使得轮廓线每个位置是否被填的状态为 SSS 即可。现在我们需要枚举每个格子的颜色,同时还要判断能否被填,所以我们要记录一维表示 dp[S]dp[S]dp[S] 数组。为了转移时维护这一数组,我们还要记录轮廓线上每个格子的颜色。于是设 f(i,j,c,s)f(i,j,c,s)f(i,j,c,s) 表示考虑到 (i,j)(i,j)(i,j),轮廓线上格

2021-07-23 16:42:41 33 1

原创 【51NOD1965】奇怪的式子(min_25筛)

一些记号:d(x)d(x)d(x) 表示 xxx 的因数个数。如无特殊说明,以下记为 ppp 的变量的取值集合为质数集合。为了方便,有时用 a/ba/ba/b 表示 ⌊ab⌋\lfloor\dfrac{a}{b}\rfloor⌊ba​⌋。记模数为 PPP。有个加号不太好处理,我们分开两部分来求:∏i=1nd(i)i\prod\limits_{i=1}^nd(i)^ii=1∏n​d(i)i 和 ∏i=1nd(i)μ(i)\prod\limits_{i=1}^nd(i)^{\mu(i)}i=1∏n

2021-07-23 11:12:16 13

原创 【51NOD1847】奇怪的数学题(杜教筛,min_25筛,第二类斯特林数解决自然数幂求和)

设 f(n)f(n)f(n) 表示 nnn 的次大因数。∑i=1n∑j=1nf(gcd⁡(i,j))k=∑d=1nf(d)k∑i=1(n/d)∑j=1(n/d)[gcd⁡(i,j)=1]=∑d=1nf(d)k(2∑i=1(n/d)φ(i)−1)\begin{aligned}&\sum_{i=1}^n\sum_{j=1}^nf(\gcd(i,j))^k\\=&\sum_{d=1}^nf(d)^k\sum_{i=1}^{(n/d)}\sum_{j=1}^{(n/d)}[\gcd(i,j)

2021-07-22 20:55:56 21

原创 【bzoj3812】【清华集训2014】主旋律(容斥,计数)

毒 瘤 计 数!XSY 题意不是很清楚,这里给出更加清楚的:给定一张 nnn 个点 mmm 条边的无向图,保证该图整个图为一个强联通分量,且无重边自环。现在需要求出:有多少种删边方案,使得删完边后,整个图依旧是一个强联通分量。数据范围:n≤15,m≤n(n−1)n\leq 15,m\leq n(n-1)n≤15,m≤n(n−1)。记 E[U,V]E[U,V]E[U,V] 表示题目给的所有边中,起点在 UUU 中、终点在 VVV 中的所有边的集合,其中 U,VU,VU,V 为点集。对于一个点集 SSS

2021-07-21 09:34:35 25

原创 【XSY3241】暴风士兵(stormtrooper)(多项式分治,期望)

设一个人被扣了 iii 滴血的概率为 pip_ipi​,设 ci=exp−ic_i=exp-ici​=exp−i 且只有 c0,c1,⋯ ,cexpc_0,c_1,\cdots,c_{exp}c0​,c1​,⋯,cexp​ 有值,那么题目就是在问 ∑i=0expcipi\sum\limits_{i=0}^{exp}c_ip_ii=0∑exp​ci​pi​。我们设 pip_ipi​ 的生成函数为 P(x)P(x)P(x),那么第 iii 次操作相当于将 P(x)P(x)P(x) 乘上 (pix+(1−pi)

2021-07-20 15:49:28 36

原创 【BZOJ4162】shlw loves matrix II(特征多项式)

一般看到这种求某个矩阵的多项式的题就有可能是利用其特征多项式。给定矩阵 MMM,求 MnM^nMn。求出 MMM 的特征多项式 f(x)f(x)f(x),那么 f(M)=0f(M)=0f(M)=0。所以我们可以让 MnM^nMn 一直减 f(M)f(M)f(M) 直到次数低于 f(M)f(M)f(M) 为止。意思就是我们先求出 g(x)=xn mod f(x)g(x)=x^n\bmod f(x)g(x)=xnmodf(x),然后再代入 x=Mx=Mx=M。时间复杂度 O(k2log⁡n)O(k^2

2021-07-19 16:35:27 18

原创 【XSY2777】特征多项式

给一个没有特殊性质的矩阵 AAA,求其特征多项式 ∣λI−A∣|\lambda I-A|∣λI−A∣。定义:若存在一可逆矩阵 PPP,使得 B=PAP−1B=PAP^{-1}B=PAP−1,那么称 AAA 与 BBB 相似,记为 A∼BA\sim BA∼B。相似矩阵有很多特殊性质,比如相似矩阵的特征多项式相同。证明:首先有 λI=λPIP−1=PλIP−1\lambda I=\lambda PIP^{-1}=P\lambda IP^{-1}λI=λPIP−1=PλIP−1。det⁡(B)=∣

2021-07-19 11:39:14 18

原创 【BZOJ2813】奇妙的Fibonacci(结论,线性筛)

结论:fj∣fif_j|f_ifj​∣fi​ 等价于 j∣ij|ij∣i。证明:(来自DTZ巨佬)于是询问就变成了求一个数的因数个数和因数的平方和。设 x=p1k1p2k2⋯pmkmx=p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}x=p1k1​​p2k2​​⋯pmkm​​。那么 xxx 的因数个数为 ∏i=1m(ki+1)\prod\limits_{i=1}^m(k_i+1)i=1∏m​(ki​+1),因数平方和为 ∏i=1m∑j=0kipi2j\prod\limits_{

2021-07-18 16:00:57 10

原创 【BZOJ3453】XLkxc(拉格朗日插值)

f(n)=∑i=1kikg(n)=∑i=1nf(i)h(n)=∑i=0ng(a+id)\begin{aligned}f(n)&=\sum_{i=1}^k i^k\\g(n)&=\sum_{i=1}^n f(i)\\h(n)&=\sum_{i=0}^ng(a+id)\end{aligned}f(n)g(n)h(n)​=i=1∑k​ik=i=1∑n​f(i)=i=0∑n​g(a+id)​f(n)f(n)f(n) 是自然数幂求和,为 k+1k+1k+1 次多项式。g(n)g

2021-07-18 10:17:16 10

原创 【POJ1430】Binary Stirling Numbers(第二类斯特林数,组合数)

求 {nm} mod 2\begin{Bmatrix}n\\m\end{Bmatrix}\bmod 2{nm​}mod2 的值。由第二类斯特林数的递推公式:{nm}={n−1m−1}+m{nm}\begin{Bmatrix}n\\m\end{Bmatrix}=\begin{Bmatrix}n-1\\m-1\end{Bmatrix}+m\begin{Bmatrix}n\\m\end{Bmatrix}{nm​}={n−1m−1​}+m{nm​}可知:{nm}≡{{n−1m−1}if m m

2021-07-17 16:03:04 16 1

原创 【bzoj4869】【六省联考2017】相逢是问候(扩展欧拉函数)

和《花神游历各国》有异曲同工之妙。首先能想到扩展欧拉定理:ab≡{ab mod φ(p)+φ(p)if b≥φ(p)abif b<φ(p)(modp)a^b\equiv\begin{cases}a^{b\bmod \varphi(p)+\varphi(p)}&\text{if }b\geq\varphi(p)\\a^b&\text{if }b< \varphi(p)\end{cases}\pmod pab≡{abmodφ(p)+φ(p)ab​

2021-07-17 12:53:18 33

原创 一般生成函数和指数生成函数

一开始搞不懂指数生成函数到底是什么组合意义……一般生成函数(OGF)一般生成函数常用于多重集选择组合问题。例:有 nnn 种不同的物品,每种分别有 a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1​,a2​,⋯,an​ 个,求从中选出 mmm 个的组合方案数。我们设第 iii 种物品的一般生成函数为 Gi(x)=1+x+x2+⋯+xaiG_i(x)=1+x+x^2+\cdots+x^{a_i}Gi​(x)=1+x+x2+⋯+xai​。设 F(x)=∏i=1nGi(x)=(1+x+⋯+

2021-07-15 22:11:21 49

原创 【XSY3938】平方问题(线段树)

题面平方问题题解记 p=998244353p=998244353p=998244353,那么 ap−1≡1(modp)a^{p-1}\equiv 1\pmod pap−1≡1(modp)。(gcd⁡(a,p)=1\gcd(a,p)=1gcd(a,p)=1)那么 ab≡ab mod (p−1)(modp)a^b\equiv a^{b\bmod (p-1)}\pmod pab≡abmod(p−1)(modp)。题目的操作相当于每次把一个数的指数乘上 222,那么每个数都能表示成 a2xa^{2^x}a

2021-07-15 15:07:41 14

原创 【XSY4074】intervcl C(推式子,根号分类)

题面intervcl C题解首先询问和原数列顺序无关,那么不妨把数列从大到小排序,仍记为 aia_iai​。那么题目就是给出 [l,r][l,r][l,r],问 al,al+1,⋯ ,ara_l,a_{l+1},\cdots,a_ral​,al+1​,⋯,ar​ 中任取 kkk 个数,这 kkk 个数中最大值的期望。由于这是等概率选择,每种情况出现的概率为 1(mk)\dfrac{1}{\binom{m}{k}}(km​)1​(记 m=r−l+1m=r-l+1m=r−l+1),所以我们只需计算每种

2021-07-15 10:57:01 9

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除