(机器学习笔记一)回归分析

1.监督学习

训练集: {(X(i),Y(i));i=1,2,,m}
X: 表示输入值
Y: 表示输出值
i: 表示训练集中的样本索引。
学习结果:函数 h:XY ,使得 h(X) 能够很好的预测 Y
由于历史原因 h 被称作假设(hypothesis).

如果目标变量是连续的值,我们称这个学习问题是一个回归问题。
如果目标变量是很少的几个离散的值,我们称它为分类问题。

2.线性回归

形如关于 X 的线性函数:

hθ(x)=θ0+θ1x1+θ2x2

θi 是参数
hθ(x) 在不造成困惑的前提下可以简写为 h(x)
x0=1 这是截距项
上式可以写为:

h(x)=i=0nθixi=θTx

右边把 θ,x 视为向量
n 是输入的变量的个数(不算x0
我们通过给的训练集,去学习选择 θ

训练集:eg:房屋售价问题

面积 x1 卧室数 x2 价格y
21043400
16003330
24003369

我们训练的目标就是要让 h(x) 尽量与 y 相符。
为了达到这个目标,我们需要一个代价函数来评估。

普通最小二乘法(OLS),代价函数为:

J(θ)=12mi=1m(hθ(x(i))y(i))2

其中 12 是为了方便在求导的时候约掉系数。
i: 样本索引
m: 样本总数

3.LMS 算法(least mean squares algorithm)

θj:=θjαθjJ(θ)

当只有一个样本时,即 m=1 , 计算简化得到:
θj:=θj+α(y(i)hθ(x(i)))x(i)j

j 为第j个参数
i为第i个训练样本

这个就是LMS更新规则,它有几个属性似乎是自然的直观的。更新误差项是均衡的,误差项越小相应参数的改变越小,误差项越大,相应参数的改变越大

4.梯度下降法

当很多样本时,怎么样来更新迭代 θ

  • 批量梯度下降(batch gradient descent)

    θjJ(θ)=1mi=1m(hθ(xi)yi)xij=1mi=1m(yihθ(xi))xij

    求得每个 θj,j(1,2,,n)
    θj:=θj+1mi=1m(yihθ(xi))xij

    计算出新的 hθ(X) 然后再迭代下一步。
    最终得到全局最优解。
    可以看到每一步迭代bgd都要遍历全部的样本,速度较慢。

  • 增量(increment)梯度下降 (随机(stochastic)递度下降法)

    θj:=θj+α(y(i)hθ(x(i)))x(i)j

    每一步迭代只利用一个样本,比bgd快,但不一定能聚焦收敛到最小值,可能会在最小值附近摆动,但是由于通常情况下局部最小值都接近全局最小值,所以当样本量特别大的时候,首选随机梯度下降法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值