Hive的优化 优化有很多种方法 比如: join sql 数据倾斜 数据压缩方式和存储格式
表的优化:
Join:
1)小表Join大表,
将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用Group让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。
select count(distinct s_id) from score;
select count(s_id) from score group by s_id;在map端进行聚合,效率更高
3)大表Join大表
(1)空KEY过滤
INSERT OVERWRITE TABLE jointable
SELECT a.* FROM (SELECT * FROM nullidtable WHERE id IS NOT NULL ) a JOIN ori b ON a.id = b.id;
结果:
No rows affected (141.585 seconds)
- 空key转换
有时虽然某个key为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join的结果中,此时我们可以表a中key为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的reducer上。例如
set hive.exec.reducers.bytes.per.reducer=32123456;
set mapreduce.job.reduces=7;
INSERT OVERWRITE TABLE jointable
SELECT a.*
FROM nullidtable a
LEFT JOIN ori b ON CASE WHEN a.id IS NULL THEN concat('hive', rand()) ELSE a.id END = b.id;
No rows affected (42.594 seconds)
Sql语句上的优化 比如 尽量使用GroupBy 代替 distict关键字
在数据倾斜方面的优化:
Map数量的调整:
当hive中的小文件太多时,需要设置参数进入map之前进行合并:因为启动Map是很慢的
set mapred.max.split.size=112345600;
set mapred.min.split.size.per.node=112345600;
set mapred.min.split.size.per.rack=112345600;
set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并。
当一个文件中127M 有几千万行数据 需要适当增加Map数量 将一个文件筛分为多个小文件,交给多个Map去处理:
筛分办法:
| set mapreduce.job.reduces =10; create table a_1 as select * from a distribute by rand(123); |
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
数据压缩和存储方式 采用snapy方式压缩 存储为ORC格式
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc tblproperties ("orc.compress"="SNAPPY");
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。
9197

被折叠的 条评论
为什么被折叠?



