题目传送门:
P2878 [USACO07JAN] Protecting the Flowers S - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
前言:
这道题的核心目标是确定将奶牛送回牛圈的最优顺序,使得所有奶牛吃掉花的总数量达到最小。说难吧也不难,难的话也确实有一丢丢,本题将详细讲解。
#题目具体步骤:
1、数据读取与存储:
首先,需要读取奶牛的总数 ,然后依次读取每天奶牛的
和
信息,并将这些信息存储起来。在代码实现中,我们可以使用结构体或者类来存储每头奶牛的信息,再用数组或者向量来存储所有奶牛的信息。
假设,在C++中可以定义一个结构体:
struct Cow {
int t; // 到牛圈的单程时间
int d; // 每分钟吃花的数量
};
然后使用 vector<Cow>来存储所有奶牛的信息。
2、对奶牛进行排序:
我们根据上述贪心策略,按照 和
的比值大到小对奶牛进行排序。在代码实现中,需要自定义一个比较函数,用于告诉排序算法如何比较不同奶牛的优先级。
例如,在C++中我们可以定义如下比较函数:
bool p(const C& a, const C& b) {
return (double)a.d / a.t > (double)b.d / b.t;
}
然后使用 sort 函数进行排序:
std::sort(c.begin(), c.end(), p);
3、计算总破坏花朵数:
按照排序后的顺序依次处理奶牛。初始化总破坏花朵数 td 为0,当前已经飞的时间 ct为0。对于每头奶牛,计算其在当前时间内破坏的花朵数,即 ct*D_i ,并将其累加到 td 中。然后更新 ct , 因为运送这头奶牛来回需要 的时间,所以 ct 要加上
。
例如,在C++代码中可以这样实现~:
long long td= 0;
long long ct= 0;
for (int i = 0; i < n; ++i) {
td+= ct* c[i].d;
ct+= 2 * c[i].t;
}
4、输出结果:
最后,输出结算得到的总破坏花朵数 td。
##复杂度分析:
1、时间复杂度:
排序操作的时间复杂度通常为 O(n log n),遍历奶牛列表的时间复杂度为 O(n),因此总的时间复杂度为 O(n log n)。
2、空间复杂度:
主要用于存储奶牛的信息,空间复杂度为 O(n)。
###代码:
#include <bits/stdc++.h>
using namespace std;
// 定义一个结构体来存储每头奶牛的信息
struct C {
int t; // 到牛圈的单程时间
int d; // 每分钟吃花的数量
};
// 自定义比较函数,用于对奶牛按照 d / t 的比值从大到小排序
bool p(const C& a, const C& b) {
return (double)a.d / a.t > (double)b.d / b.t;
}
int main() {
int n;
cin >> n;
vector<C> c(n);
// 读取每头奶牛的信息
for (int i = 0; i < n; ++i) {
cin >> c[i].t >> c[i].d;
}
// 对奶牛进行排序
sort(c.begin(), c.end(), p);
long long td = 0; // 总破坏花朵数,使用 long long 防止溢出
long long ct = 0; // 当前已经花费的时间
// 遍历排序后的奶牛列表
for (int i = 0; i < n; ++i) {
// 计算当前奶牛在当前时间内破坏的花朵数并累加到总破坏花朵数中
td += ct * c[i].d;
// 更新当前时间,来回用时为 2 * t
ct += 2 * c[i].t;
}
cout << td << endl;
return 0;
}