秒杀与其他业务最大的区别在于:秒杀的瞬间,(1)系统的并发量会非常的大(2)并发量大的同时,网络的流量也会瞬间变大。
关于(2),最常用的办法就是做页面静态化,也就是常说的前后端分离,把静态页面直接缓存到用户的浏览器端,所需要的数据从服务端接口动态获取。这样会大大节省网络的流量,再加上CDN,一般不会有大问题。
关于(1),这里的核心问题就在于如何在大并发的情况下能保证DB能扛得住压力,因为大并发的瓶颈在于DB。如果说请求直接从前端透传到DB,显然,DB是无法承受几十万上百万甚至上千万的并发量的。所以,我们能做的只能是减少对DB的访问,前端发出了100万个请求,通过我们的处理,最终只有10个会访问DB,这样就可以了!针对秒杀这种场景,因为秒杀商品的数量是有限的,这种做法刚好适用!
那么具体是如何来减少DB的访问呢?
假如:某个商品可秒杀的数量是10,那么在秒杀活动开始之前,把商品的ID和数量加载到缓存,比如:Redis。服务端收到请求的时候,首先减一下Redis里面的数量,如果数量减到0随后的访问直接返回秒杀失败。也就是说,只有10个请求最终会去实际的请求DB。
当然,如果我们的商品数比较多,1万件商品参与秒杀,1万*10=10万个并发去请求DB,DB的压力还是会很大,这里就用到另一个非常重要的组件:消息队列。我们不是把请求直接去访问DB,而是先把请求写到消息队列,做一个缓存,然后再去慢慢的更新数据库。这样做以后,前端用户的请求可能不会立即得到响应是成功还是失败,很可能得到的是一个排队中的返回值,这个时候,需要客户端再去服务端轮询,因为我们不能保证一定就秒杀成功了。当服务端出队,生成订单以后,把用户ID和商品ID写到缓存中,来应对客户端的轮询就可以了。
这样处理以后,我们的应用是可以很简单的进行分布式横向扩展的,以应对更大的并发。
当然,秒杀系统还有很多要处理的事情:比如防刷限流、比如分布式Session等等。
在秒杀、抢火车票等地方,我们通常用遇到这样高并发的问题,下面我提供了四种解决方案:
1、使用文件锁
- $fp = fopen("order.lock", "r");
- if(flock($fp,LOCK_EX)){
- //..处理订单的代码
- flock($fp,LOCK_UN);
- }
- fclose($fp);
2、使用消息队列
我们常用到Memcacheq、Radis。
比如:有100张票可供用户抢,那么就可以把这100张票放到缓存中,读写时不要加锁。 当并发量大的时候,可能有500人左右抢票成功,这样对于500后面的请求可以直接转到活动结束的静态页面。进去的500个人中有400个人是不可能获得商品的。所以可以根据进入队列的先后顺序只能前100个人购买成功。后面400个人就直接转到活动结束页面。当然进去500个人只是举个例子,至于多少可以自己调整。而活动结束页面一定要用静态页面,不要用数据库。这样就减轻了数据库的压力。
—————————————————————————————————————————————————————————
3、如果是分布式集群服务器,就需要一个或多个队列服务器
小米和淘宝的抢购还是有稍许不同的,小米重在抢的那瞬间,抢到了名额,就是你的,你就可以下单结算。而淘宝则重在付款的时候的过滤,做了多层过滤,比如要卖10件商品,他会让大于10的用户抢到,在付款的时候再进行并发过滤,一层层的减少一瞬间的并发量。
—————————————————————————————————————————————————————————
4、使用Memcache锁
product_lock_key 为票锁key
当product_key存在于memcached中时,所有用户都可以进入下单流程。
当进入支付流程时,首先往memcached存放add(product_lock_key, “1″),如果返回成功,进入支付流程。如果不成,则说明已经有人进入支付流程,则线程等待N秒,递归执行add操作。