AtCoder Beginner Contest 151 E - Max-Min Sums

题目链接

题意:给你n个数和一个 K (表示要重n个数中找出K个数) 在K个数中 求出 最大值减去最小值的差的总和。并对10^9+7取余

涉及知识点:逆元,组合数

思路:对于每一位数,考虑其作为最小值和最大值出现的可能。 所以在这里需要排序, 在一个有序数列中, 最小值和最大值一定是出现在首尾两端。所以只要每次固定首尾 判断以其开头或结尾的组合数即可。

注意:最后的输出可能为负数

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;
const int mod = 1000000007;
const int MAXN = 100005;
LL num[MAXN];
LL fact[MAXN];
LL my_pow(LL a, LL b)
{
    LL sum=1;
    while(b>0)
    {
        if(b&1)
            sum=sum*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return sum%mod;
}
void init()
{
    fact[0]=1;
    for(int i=1;i<MAXN;++i)
       fact[i]=fact[i-1]*i%mod;
}
LL comb(LL a, LL b)
{
    if(b>a)
        return 0;
    return fact[a] *  my_pow(fact[b] * fact[a-b] % mod, mod-2) % mod;
}
int main()
{
   int n, k;
   init();
   scanf("%d %d", &n, &k);
   for(int i=0;i<n;++i)
       scanf("%lld", &num[i]);
   LL ans=0;
   sort(num, num+n);
   for(int i=0;i<n-k+1;++i)
   {
       ans = (ans + (num[n-i-1]-num[i])%mod*comb(n-i-1,k-1)%mod)%mod;
       //printf("%d %d %lld\n", n-i-1, k-1, (num[n-i-1]-num[i])*comb(n-i-1,k-1)%mod);
   }
   printf("%lld\n" ,(ans % mod + mod)%mod);
   return 0;
}

 

发布了196 篇原创文章 · 获赞 20 · 访问量 8万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览