二叉树的基本操作

这篇博客详细介绍了二叉树的特点,包括每个节点最多有两个子树以及有序性。接着,文章重点讲解了二叉树的基本操作,特别是递归方式下如何求解二叉树的节点个数。此外,还提供了前序、中序和后序遍历的递归算法图解,并给出了完整的非递归遍历的代码实现。
摘要由CSDN通过智能技术生成

1.二叉树的特点:

二叉树的特点:

1.每个节点最多有两棵子树,即二叉树中不存在度大于2的节点(分支数最大不超过2) 
2.二叉树的子树有左右之分,也就是说二叉树是有序的。

2.二叉树的基本操作(递归):

以下面的二叉树为例:

这里写图片描述

1.求二叉树的节点个数: 
思路: 
(1)root 为空(整个二叉树的根节点为空) return 0; 
(2)root不为空 —>左子树的节点个数 + 右子树的节点个数 + 1(当前节点)

代码如下:

size_t _Size(Node* root)
    {
        if (root == NULL)
        {
            return 0;
        }
        return _Size(root->_left) + _Size(root->_right) + 1;
    }

这里写图片描述

代码如下:

size_t _LeafSize(Node* root)
    {
        if (root == 0)
        {
            return 0;
        }
        if (NULL == root->_left && NULL == root->_right)
        {
            return 1;
        }
        return _LeafSize(root->_left) + _LeafSize(root->_right);
    }

这里写图片描述

代码如下:

size_t _GetKLevel(Node* root, size_t k)
    {
        if (root == NULL)
        {
            return 0;
        }
        if (k == 1)
        {
            return 1;
        }
        return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
    }

这里写图片描述

代码如下:

size_t _Depth(Node* root)
    {
        if (NULL == root)
        {
            return 0;
        }
        if (NULL == root->_left && NULL == root->_right)
        {
            return 1;
        }
        size_t leftDepth = _Depth(root->_left);
        size_t rightDepth = _Depth(root->_right);
        return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
    }

这里写图片描述
代码如下:

Node* _Find(Node* root, const T& x)
    {
        if (NULL == root)
        {
            return NULL;
        }
        if (root->_data == x)
        {
            return root;
        }
        Node* ret = _Find(root->_left, x);
        if (ret)
        {
            return ret;
        }
        return _Find(root->_right, x);
    }

递归算法的前序遍历的图解:

这里写图片描述

注明:紫颜色标记左子树的路径、蓝颜色标记返回路径、红色标记右子树的路径。 
这里只画出了前序遍历的调用过程,而中序和后序遍历是相似的过程。

全部代码如下:

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
#include<queue>

//二叉树节点的定义
template<class T>
struct BinaryTreeNode
{
    BinaryTreeNode(const T& data)
    :_data(data)
    , _left(NULL)
    , _right(NULL)
    {}
    T _data;
    BinaryTreeNode<T>* _left;
    BinaryTreeNode<T>* _right;
};

//定义二叉树
template<class T>
class BinaryTree
{
    typedef BinaryTreeNode<T> Node;
public:
    //创建二叉树
    BinaryTree(T* arr, size_t n, const T& invalid)
    {
        size_t index = 0;
        _root = _CreatBinaryTree(arr, n, invalid, index);
    }

    BinaryTree()
        :_root(NULL)
    {}

    //拷贝构造函数
    BinaryTree(const BinaryTree<T>& bt)
    {
        _root = _CopyBinaryTree(bt._root);
    }

    //赋值运算符的重载
    BinaryTree<T>& operator=(const BinaryTree<T>& bt)
    {
        if (this != &bt)
        {
            this->~BinaryTree();//释放旧空间
            _root = _CopyBinaryTree(bt._root);
        }
        return *this;
    }

    //先序遍历
    void PreOrder()
    {
        _PreOrder(_root);
        cout << endl;
    }

    //中序遍历
    void InOrder()
    {
        _InOrder(_root);
        cout << endl;
    }
    //后序遍历
    void PostOrder()
    {
        _PostOrder(_root);
        cout << endl;
    }
    //层序遍历
    void LevelOrder()
    {
        queue<Node*> q;
        if (_root)
        {
            q.push(_root);
        }

        while (!q.empty())
        {
            Node* front = q.front();
            cout << front->_data << " ";
            if (front->_left)
            {
                q.push(front->_left);
            }
            if (front->_right)
            {
                q.push(front->_right);
            }
            q.pop();
        }
    }

    size_t Size()
    {
        return _Size(_root);
    }

    //求叶子节点的个数
    size_t LeafSize()
    {
        return _LeafSize(_root);
    }

    //获取第K层节点的个数
    size_t GetKLevel(size_t k)
    {
        return _GetKLevel(_root, k);
    }

    //获取二叉树的深度
    size_t Depth()
    {
        return _Depth(_root);
    }
    //查找值为x的节点
    Node* Find(const T& x)
    {
        return _Find(_root, x);
    }

    ~BinaryTree()
    {
        _Destroy(_root);
    }

protected:
    Node* _CopyBinaryTree(Node* root)
    {
        if (NULL == root)
        {
            return NULL;
        }
        Node* newRoot = new Node(root->_data);//拷贝根节点
        newRoot->_left = _CopyBinaryTree(root->_left);
        newRoot->_right = _CopyBinaryTree(root->_right);
        return newRoot;
    }

    Node* _Find(Node* root, const T& x)
    {
        if (NULL == root)
        {
            return NULL;
        }
        if (root->_data == x)
        {
            return root;
        }
        Node* ret = _Find(root->_left, x);
        if (ret)
        {
            return ret;
        }
        return _Find(root->_right, x);
    }

    size_t _Depth(Node* root)
    {
        if (NULL == root)
        {
            return 0;
        }
        if (NULL == root->_left && NULL == root->_right)
        {
            return 1;
        }
        size_t leftDepth = _Depth(root->_left);
        size_t rightDepth = _Depth(root->_right);
        return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
    }

    size_t _GetKLevel(Node* root, size_t k)
    {
        if (root == NULL)
        {
            return 0;
        }
        if (k == 1)
        {
            return 1;
        }
        return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);
    }

    size_t _LeafSize(Node* root)
    {
        if (root == 0)
        {
            return 0;
        }
        if (NULL == root->_left && NULL == root->_right)
        {
            return 1;
        }
        return _LeafSize(root->_left) + _LeafSize(root->_right);
    }

    Node* _CreatBinaryTree(T* arr, size_t n, const T& invalid, size_t& index)
    {
        Node* root = NULL;
        if (index < n && arr[index] != invalid)
        {
            root = new Node(arr[index]);
            root->_left = _CreatBinaryTree(arr, n, invalid, ++index);
            root->_right = _CreatBinaryTree(arr, n, invalid, ++index);
        }
        return root;
    }

    void _Destroy(Node* root)
    {
        if (root)
        {
            _Destroy(root->_left);
            _Destroy(root->_right);
            delete root;
            root = NULL;
        }
    }

    void _PreOrder(Node* root)
    {
        if (root)
        {
            cout << root->_data << " ";
            _PreOrder(root->_left);
            _PreOrder(root->_right);
        }
    }

    void _InOrder(Node* root)
    {
        if (root)
        {
            _InOrder(root->_left);
            cout << root->_data << " ";
            _InOrder(root->_right);
        }
    }

    void _PostOrder(Node* root)
    {
        if (root)
        {
            _PostOrder(root->_left);
            _PostOrder(root->_right);
            cout << root->_data << " ";
        }
    }

    size_t _Size(Node* root)
    {
        if (root == NULL)
        {
            return 0;
        }
        return _Size(root->_left) + _Size(root->_right) + 1;
    }
private:
    Node* _root;
};

测试代码如下:

void Test()
{
    int array[10] = { 1, 2, 3, '#', '#', 4, '#', '#', 5, 6 };
    BinaryTree<int> bt(array, sizeof(array) / sizeof(int), '#');
    /*bt.PreOrder();
    bt.InOrder();
    bt.PostOrder();
    bt.LevelOrder();*/
    cout << bt.Size() << endl;
    /*cout << bt.LeafSize() << endl;
    cout << bt.GetKLevel(3) << endl;
    cout << bt.GetKLevel(2) << endl;
    cout << bt.GetKLevel(1) << endl;
    cout << bt.GetKLevel(8) << endl;*/

    cout << bt.Depth() << endl;
    BinaryTreeNode<int>* ret = bt.Find(6);
    if (ret)
    {
        cout << ret->_data << endl;
    }
}

void Test2()
{
    int array[10] = { 1, 2, 3, '#', '#', 4, '#', '#', 5, 6 };
    BinaryTree<int> bt(array, sizeof(array) / sizeof(int), '#');
    bt.PreOrder();
    int array2[15] = { 1, 2, '#', 3, '#', '#', 4, 5, '#', 6, '#', 7, '#', '#', 8 };
    BinaryTree<int> bt2(array2, sizeof(array2) / sizeof(int), '#');
    bt2.PreOrder();
    bt2 = bt;
    bt2.PreOrder();
}

int main()
{
    Test2();
    return 0;
}

3.前序、中序及后序的非递归遍历:

这里写图片描述
前序遍历的代码如下:


     //先序遍历(非递归)
    void PreOrderR()
    {
        Node* cur = _root;
        stack<Node*> s;
        while (cur || !s.empty())
        {
            //将左支路的节点均压栈
            while (cur)
            {
                cout << cur->_data << " ";
                s.push(cur);
                cur = cur->_left;       
            }
            //栈中保存的节点的左子树都已访问过
            //只剩下栈中节点的右子树没有访问
            Node* top = s.top();
            s.pop();
            cur = top->_right;//循环的子问题
        }
    }

中序遍历的代码如下:

//中序遍历的非递归
    void InOrderR()
    {
        Node* cur = _root;
        stack<Node*> s;
        while (cur || !s.empty())
        {
            while (cur)
            {
                s.push(cur);
                cur = cur->_left;
            }

            //栈中节点的左子树已经遍历完
            //栈中节点自身和右子树还没有遍历
            Node* top = s.top();
            cout << top->_data << " ";
            s.pop();
            cur = top->_right;
        }
        cout << endl;
    }

后序遍历的两种方法: 
第一种方法:

后序遍历的非递归算法
    使用一个栈index来标记栈s的栈顶元素出现的次数,并且栈index与栈s同入栈和同出栈
    void PostOrderR()
    {
        Node* cur = _root;
        stack<Node*> s;
        stack<int> index;
        while (cur || !s.empty())
        {
            while (cur)
            {
                s.push(cur);
                index.push(0);//第一次出现在栈顶时标记为0
                cur = cur->_left;
            }

            if (index.top() == 1)
            {
                Node* top = s.top();
                cout << top->_data << " ";
                s.pop();
                index.pop();
            }
            else
            {
                Node* top = s.top();//第二次出现
                index.top() = 1;//将其设置为1
                cur = top->_right;//循环的子问题
            }
        }
    }

第二种方法:

//后序遍历的非递归算法
    //使用一个标记位:每次访问一个节点,则更新标记位
    void PostOrderR()
    {
        Node* cur = _root;
        stack<Node*> s;
        Node* prev = NULL;
        while (cur || !s.empty())
        {
            while (cur)
            {
                s.push(cur);
                cur = cur->_left;
            }
            Node* top = s.top();
            if (NULL == top->_right || top->_right == prev)
            {
                cout << top->_data << " ";
                s.pop();
                prev = top;
            }
            else
            {
                cur = top->_right;//循环的子问题
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值