C++算法之归并排序--(4)

    什么是归并排序?

    简单的说就是合并多个有序对象为一个有序对象的排序。

   常见的归并排序有两路归并排序(Merge Sort),多相归并排序(Polyphase Merge Sort),Strand排序(Strand Sort)。下面介绍第一种:
(一)两路归并排序
最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定
     两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。
设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。
算法示意图:

void Merge(int *a, int p, int q, int r)
{
	int n1 = q-p+1;
	int n2 = r-q;
	int *L = new int[n1+1];
	int *R = new int[n2+1];
	int i, j, k;
	
	for (i=0; i<n1; i++){
		L[i] = a[p+i];
	}
	for (j=0; j<n2; j++){
		R[j] = a[q+j+1];
	}
	L[n1] = 10000000;
	R[n2] = 10000000;

	for (i=0, j=0, k=p; k<=r; k++)
	{
		if (L[i]<=R[j])
		{
			a[k] = L[i];
			i++;
		}else{
			a[k] = R[j];
			j++;
		}
	}

	delete []L;
	delete []R;
}

void MergeSort1(int *a, int p, int r)
{
	if (p<r)
	{
		int q = (p+r)/2;
		MergeSort1(a, p, q);
		MergeSort1(a, q+1, r);
		Merge(a, p, q, r);
	}
}
虽然插入排序的时间复杂度为O(n^2),归并排序的时间复杂度为O(nlogn),但插入排序中的常数因子使得它在n较小时,运行得要更快一些。因此,在归并排序算法中,当子问题足够小时,采用插入排序算法就比较合适了。

代码实现:

void MergeSort2(int *a, int p, int r)
{
	if ((r-p)>=50) // 小于50个数据的数组进行插入排序
	{
		int q = (p+r)/2;
		MergeSort2(a, p, q);
		MergeSort2(a, q+1, r);
		Merge(a, p, q, r);
	}else
	{
		InsertionSort(a+p, r-p+1);
	}
}

MergeSort1与MergeSort2算法排序时间实验结果比较:


阅读更多

扫码向博主提问

老樊Lu码

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • C/C++应用开发
  • Linux 应用开发
  • 互联网金融
  • 大数据开发
  • Qt
去开通我的Chat快问
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页