机器学习入门~神经网络②

神经网络的实现

在这里插入图片描述
计算出假设函数hθ(x)的步骤是通过左边的这些王芳计算出三个隐藏单元的激活值,然后利用这些值来计算最终的输出hθ(x)。
接下来,为上述方程中的表达式赋予新的符号,以第一项为例。
在这里插入图片描述
将sigmoid函数中的项表示为z(2)1,其中,上标(2)表示第二层,即神经网络中的隐藏层,对应下图👇。
在这里插入图片描述
故,新的表达式为:a1(2) = g( z1(2) ),以此类推,对2和3进行相同操作。

  • 如何进行向量化?
    在这里插入图片描述
    x定义为四维向量,其中x0仍为1,而向量z定义为三维向量,由z1,z2,z3组成。通过向量化,经过下面的两部计算👇。在这里插入图片描述
    (如果将第一层输入层也看做隐藏层,那么z(2) = Θ(1)*a(1))
    另外,得到hθ(x)还需要a0(2),而如上一篇博文所述,a0存在于偏置单元中,因此,我们需要加入:
    在这里插入图片描述
    这样,a(2)成为了四维向量,因为加入了a0(2) = 1。hθ(x)也可计算而出。如上所述的步骤称为前向传播,即由输入层输入,向前传播给隐藏层,计算出隐藏层的激活项之后继续向前传播直至计算出输出层的激活项。

通过前向传播理解神经网络

在这里插入图片描述
如上图👆所示有这样一个神经网络,暂时盖住图潘左边的部分,即输入层。
在这里插入图片描述
观察图中的剩余部分,像一个逻辑回归,即用Layer 3的节点(逻辑回归单元)来预测h(x)的值,但输入逻辑回归的值是通过隐藏层计算的这些数值,即,它不是用x1,x2和x3作为特征量,而是用a1,a2和a3作为特征量。即,神经网络使用的不是x1,x2和x3作为特征量,而是通过自己的学习,得到隐藏层的特征量并加以使用,从而得到一个更好的假设函数。

前向传播的其他架构

在这里插入图片描述
神经网络架构指的就是不同神经元的连接方式。如上图所示,Layer 1仍称作输入层,Layer 4仍称做输出层,Layer 2和Layer 3为这个网络的两个隐藏层。

应用神经网络的例子

在这里插入图片描述
右图为一个复杂的机器学习问题,我们可以视左图为机器学习问题的一个简化版本,其只包括0和1两种结果,且图上只有四个样本点,正负各一个。我们要做的是建立一个非线性的判断边界,来区分正负样本。
在这里插入图片描述
更具体的,我们要计算输出函数y = x1 XOR x2 或 x1 XNOR x2(XOR:异或;XNOR:同或),本例中使用同或更好。
现在我们的目标是建立一个能够进行同或运算的神经网络。
①进行与运算AND的神经网络:
在这里插入图片描述
故,怎样得到只含单个神经元的网络,来计算AND函数呢?为了得到期望的结果,加入偏置单元+1并赋值。
在这里插入图片描述
箭头线上的-30表示-30为x0的系数,对应图中的+1单元,下边的两个+20同理。故,hΘ(x) = g( -30 + 20x1 + 20x2 )。
在这里插入图片描述
由于输入是二元的,因此可以写出hΘ(x)的值,即AND运算的真值表
在这里插入图片描述
②进行或运算OR的神经网络:
在这里插入图片描述
与AND同理,其真值表为:
在这里插入图片描述
③进行非运算NOT的神经网络:
在这里插入图片描述
由于非运算是单目运算符,因此神经网络的输入只有x1和偏置单元+1。
非运算的真值表:
在这里插入图片描述
④进行同或运算的神经网络:
在这里插入图片描述
在这里插入图片描述
神经网络如图所示,第一列权值从上至下为:-30,20,20,10,-20,-20。第二列权权值从上至下为-10,20,20。如此,得到的真值表为:
在这里插入图片描述
当输入取值相同时,输出1,反之输出0,实现了同或运算。

已标记关键词 清除标记
相关推荐
<p><span style="font-size: 18px;"><strong>【为什么学习机器学习算法?】</strong></span></p> <p style="text-align: left;"><span style="font-size: 14px;">人工智能是国家发展的战略,未来发展的必然趋势。</span></p> <p style="text-align: left;"><span style="font-size: 14px;">将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。</span></p> <p style="text-align: left;"><span style="font-size: 14px;">中国人工智能人才缺口超过</span><span style="font-size: 14px;">500</span><span style="font-size: 14px;">万,人才供不应求。</span></p> <p style="text-align: left;"><span style="font-size: 16px;">要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。</span></p> <p><span style="font-size: 18px;"><strong>【课程简介】</strong></span></p> <p><span style="font-size: 14px;">很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。</span></p> <p><span style="font-size: 14px;"> 本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,</span><br /><span style="font-size: 14px;"> 通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。</span></p> <p><span style="font-size: 14px;">本课程选取了机器学习经典的8大模型:</span></p> <p><span style="background-color: #2dc26b; color: #ffffff; font-size: 16px;">线性回归、逻辑回归、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维</span></p> <p><span style="font-size: 14px;">再也不用东拼西凑,一门课程真正掌握机器学习核心技术。</span></p> <p><span style="font-size: 14px;"> 它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。</span></p> <p><span style="font-size: 14px;"> </span></p> <p><span style="font-size: 14px;">《<span style="color: #e53333;">深度学习与神经网络从原理到实践</span>》课程现已上线,这使得人工智能学习路径更加完备,</span></p> <p><span style="font-size: 14px;">地址:<a href="https://edu.csdn.net/course/detail/29539">https://edu.csdn.net/course/detail/29539</a></span></p>
<p class="MsoNormal"><strong><span style="color: #337fe5; font-size: 16px;">课程导语:</span></strong></p> <p class="MsoNormal">  人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。</p> <p class="MsoNormal"> </p> <p class="MsoNormal">从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><strong><span style="color: #337fe5; font-size: 16px;">讲师简介:</span></strong></p> <p class="MsoNormal">赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习、深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。</p> <p class="MsoNormal"><span style="font-size: 16px;"> </span></p> <p class="MsoNormal"><strong><span style="color: #337fe5; font-size: 16px;">课程设计:</span></strong></p> <p class="MsoNormal"> </p> <p class="MsoNormal">本课程分为<strong>5</strong>大模块,<strong>19</strong>小节,共计<strong>5</strong><strong>40</strong>时长(约<strong>9</strong>小时):</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><span style="color: #337fe5;">第一部分</span>,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络、卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络、卷积神经网络、循环神经网络;案例简介。</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><span style="color: #337fe5;">第二部分</span>,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><strong><span style="color: #000000;">MLP技术点实战案例:</span></strong></p> <p class="p" style="text-indent: 22.0000pt;"><img src="https://img-bss.csdnimg.cn/202010110750547360.png" alt="" width="830" height="446" /></p> <p class="MsoNormal"><span style="color: #337fe5;">第三部分</span>,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络 ; CNN模型分析;主流CNN模型; Python调用keras实现CNN;</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><strong><span style="color: #000000;">CNN技术点实战案例:</span></strong></p> <p class="MsoNormal"><strong><span style="color: #337fe5;"><img src="https://img-bss.csdnimg.cn/202010110751284955.png" alt="" width="522" height="516" /></span></strong></p> <p class="MsoNormal"><span style="color: #337fe5;">第四部分</span>,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><strong><span style="color: #000000;">RNN技术点实战案例:</span></strong></p> <p><img src="https://img-bss.csdnimg.cn/202010110751499579.png" alt="" width="906" height="358" /><strong> </strong></p> <p class="MsoNormal"><span style="color: #337fe5;">第五部分</span>,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。</p> <p class="MsoNormal"> </p> <p class="MsoNormal"><strong><span style="color: #000000;">混合模型技术点实战案例</span></strong></p> <p class="MsoNormal"><strong><span style="color: #337fe5;"><img src="https://img-bss.csdnimg.cn/202010110752407750.png" alt="" width="926" height="358" /></span></strong></p>
<p> <span style="font-family:"color:#222226;font-size:18px;background-color:#FFE500;">【课程特色】</span> </p> <p> <br /> </p> <p class="ql-long-26664262"> 很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。 </p> <p class="ql-long-26664262"> 本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习初学者必会的案例精讲。 </p> <p class="ql-long-26664262"> 通过案例展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。 </p> <p class="ql-long-26664262"> 本课程选取了机器学习经典的4大编码项目涉及机器学习基本算法,神经网络和开源学习软件weka数据挖掘:, </p> <p class="ql-long-26664262"> 再也不用东拼西凑,一门课程真正掌握机器学习核心技术。 </p> <p class="ql-long-26664262"> 它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。 </p> <p class="ql-long-26664262"> <br /> </p> <p class="ql-long-26664262"> <br /> </p> <p> <span style="background-color:#FFE500;">【课程如何观看?】</span> </p> <p style="font-family:Helvetica;font-size:14px;color:#3A4151;background-color:#FFFFFF;"> 移动端:CSDN 学院APP(注意不是CSDN APP哦) </p> <p style="font-family:Helvetica;font-size:14px;color:#3A4151;background-color:#FFFFFF;"> 本课程为录播课,课程永久有效观看时长,大家可以抓紧时间学习后一起讨论哦~ </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-family:""><span style="background-color:#FFE500;">【学员专享增值服务】</span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-weight:bolder;font-family:"">源码开放</span> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 </p> <p> <br /> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页