Kafka详解(二)消费者实践及原理剖析

1. 消费者组概念

Consumer Group 是 Kafka 提供的可扩展且具有容错性的消费者机制。既然是一个组,那么组内必然可以有多个消费者或消费者实例(Consumer Instance),它们共享一个公共的 ID,这个 ID 被称为 Group ID。组内的所有消费者协调在一起来消费订阅主题(Subscribed Topics)的所有分区(Partition)。当然,每个分区只能由同一个消费者组内的一个 Consumer 实例来消费。

  • Consumer Group 下可以有一个或多个 Consumer 实例。这里的实例可以是一个单独的进程,也可以是同一进程下的线程。在实际场景中,使用进程更为常见一些。
  • Group ID 是一个字符串,在一个 Kafka 集群中,它标识唯一的一个 Consumer Group。
  • Consumer Group 下所有实例订阅的主题的单个分区,只能分配给组内的某个 Consumer 实例消费。这个分区当然也可以被其他的 Group 消费。
  • 如果所有实例都属于同一个 Group,那么它实现的就是消息队列模型;如果所有实例分别属于不同的 Group,那么它实现的就是发布 / 订阅模型。

2. 位移主题__consumer_offsets

2.1 位移管理机制

2.1.1 老版本

老版本 Consumer 的位移管理是依托于 Apache ZooKeeper 的,它会自动或手动地将位移数据提交到 ZooKeeper 中保存。当 Consumer 重启后,它能自动从 ZooKeeper 中读取位移数据,从而在上次消费截止的地方继续消费。这种设计使得 Kafka Broker 不需要保存位移数据,减少了 Broker 端需要持有的状态空间,因而有利于实现高伸缩性。

2.1.2 新版本

新版本 Consumer 的位移管理机制其实也很简单,就是将 Consumer 的位移数据作为一条条普通的 Kafka 消息,提交到 __consumer_offsets 中。可以这么说,__consumer_offsets 的主要作用是保存 Kafka 消费者的位移信息。它要求这个提交过程不仅要实现高持久性,还要支持高频的写操作。显然,Kafka 的主题设计天然就满足这两个条件,因此,使用 Kafka 主题来保存位移这件事情,实际上就是一个水到渠成的想法了。

2.1.3 位移主题的消息格式

位移主题的消息格式有3种

  • 普通消息是一个 KV 对。Key 和 Value 分别表示消息的键值和消息体。Key 中保存 3 部分内容:<Group ID,主题名,分区号 >。
  • 用于保存Consumer Group信息的消息。
  • 用于删除Group过期位移甚至是删除Group的消息(它有个专属的名字:tombstone 消息,即墓碑消息,也称 delete mark)。

2.2 创建位移主题

通常来说,当Kafka集群中的第一个Consumer程序启动时,Kafka会自动创建位移主题

  • Broker 端参数 offsets.topic.num.partitions决定分区数(默认50个分区)
  • Broker 端参数 offsets.topic.replication.factor决定副本因子(默认值是3)

如果位移主题是 Kafka 自动创建的,那么该主题的分区数是 50,副本数是 3。

3. 消费位移

Consumer 需要向 Kafka 汇报自己的位移数据,这个汇报过程被称为提交位移。因为 Consumer 能够同时消费多个分区的数据,所以位移的提交实际上是在分区粒度上进行的,即 Consumer 需要为分配给它的每个分区提交各自的位移数据。从用户的角度来说,位移提交分为自动提交和手动提交;从 Consumer 端的角度来说,位移提交分为同步提交和异步提交。

3.1 自动提交

Consumer 端有个参数叫 enable.auto.commit,如果值是 true,则 Consumer 在后台默默地为你定期提交位移,提交间隔由一个专属的参数 auto.commit.interval.ms 来控制。自动提交位移有一个显著的优点,就是省事,不用操心位移提交的事情,就能保证消息消费不会丢失。但这一点同时也是缺点。因为它太省事了,以至于丧失了很大的灵活性和可控性,完全没法把控 Consumer 端的位移管理。

3.2 手动提交

即设置 enable.auto.commit = false。一旦设置了 false,作为 Consumer 应用开发的你就要承担起位移提交的责任。Kafka Consumer API 提供了位移提交的方法,如 consumer.commitSync 等。当调用这些方法时,Kafka 会向位移主题写入相应的消息。

3.2.1 同步提交commitSync

KafkaConsumer#commitSync()方法会提交 KafkaConsumer#poll() 返回的最新位移。从名字上来看,它是一个同步操作,即该方法会一直等待,直到位移被成功提交才会返回。如果提交过程中出现异常,该方法会将异常信息抛出。下面这段代码展示了 commitSync() 的使用方法:

while (true) { 
    ConsumerRecords records = consumer.poll(Duration.ofSeconds(1)); 
    process(records); 
    // 处理消息 
    try { 
        consumer.commitSync(); 
    } catch (CommitFailedException e) { 
        handle(e); 
        // 处理提交失败异常 
    }
}

3.2.2 异步提交commitAsync()

KafkaConsumer#commitAsync()从名字上来看它就不是同步的,而是一个异步操作。调用 commitAsync() 之后,它会立即返回,不会阻塞,因此不会影响 Consumer 应用的 TPS。由于它是异步的,Kafka 提供了回调函数(callback),供你实现提交之后的逻辑,比如记录日志或处理异常等。下面这段代码展示了调用 commitAsync() 的方法:

while (true) { 
    ConsumerRecords records = consumer.poll(Duration.ofSeconds(1)); 
    process(records); 
    // 处理消息 
    consumer.commitAsync((offsets, exception) -> { 
        if (exception != null) 
            handle(exception); 
    });
}

commitAsync 是否能够替代 commitSync 呢?答案是不能。commitAsync 的问题在于,出现问题时它不会自动重试。因为它是异步操作,倘若提交失败后自动重试,那么它重试时提交的位移值可能早已经“过期”或不是最新值了。因此,异步提交的重试其实没有意义,所以 commitAsync 是不会重试的。

3.2.3 手动提交范例

如果是手动提交,我们需要将 commitSync 和 commitAsync 组合使用才能到达最理想的效果,原因有两个:

  • 可以利用 commitSync 的自动重试来规避那些瞬时错误,比如网络的瞬时抖动,Broker 端 GC 等。因为这些问题都是短暂的,自动重试通常都会成功,因此我们不想自己重试,而是希望 Kafka Consumer 帮我们做这件事。
  • 我们不希望程序总处于阻塞状态,影响 TPS。
try {
    while(true) {
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
        process(records); // 处理消息
        commitAysnc(); // 使用异步提交规避阻塞
    }
} catch(Exception e) {
    handle(e); // 处理异常
} finally {
    try {
        consumer.commitSync(); // 最后一次提交使用同步阻塞式提交
    } finally {
        consumer.close();
    }
}

这段代码同时使用了 commitSync() 和 commitAsync()。对于常规性、阶段性的手动提交,我们调用 commitAsync() 避免程序阻塞,而在 Consumer 要关闭前,我们调用 commitSync() 方法执行同步阻塞式的位移提交,以确保 Consumer 关闭前能够保存正确的位移数据。将两者结合后,我们既实现了异步无阻塞式的位移管理,也确保了 Consumer 位移的正确性,所以,如果你需要自行编写代码开发一套 Kafka Consumer 应用,那么我推荐你使用上面的代码范例来实现手动的位移提交。

3.2.4 细粒度位移提交

Kafka Consumer API 为手动提交提供了这样的方法:commitSync(Map) 和 commitAsync(Map)。它们的参数是一个 Map 对象,键就是 TopicPartition,即消费的分区,而值是一个 OffsetAndMetadata 对象,保存的主要是位移数据。就拿刚刚提过的那个例子来说,如何每处理 100 条消息就提交一次位移呢?在这里,我以 commitAsync 为例,展示一段代码,实际上,commitSync 的调用方法和它是一模一样的。

private Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();
int count = 0;
……
while (true) {
            ConsumerRecords<String, String> records = 
  consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> record: records) {
                        process(record);  // 处理消息
                        offsets.put(new TopicPartition(record.topic(), record.partition()),
                                   new OffsetAndMetadata(record.offset() + 1);
                       if(count % 100 == 0)
                                    consumer.commitAsync(offsets, null); // 回调处理逻辑是null
                        count++;
  }
}

3.3 删除过期位移

Kafka 使用 Compact 策略来删除位移主题中的过期消息,避免该主题无限期膨胀。那么应该如何定义 Compact 策略中的过期呢?对于同一个 Key 的两条消息 M1 和 M2,如果 M1 的发送时间早于 M2,那么 M1 就是过期消息。Compact 的过程就是扫描日志的所有消息,剔除那些过期的消息,然后把剩下的消息整理在一起。我在这里贴一张来自官网的图片,来说明 Compact 过程。

Kafka 提供了专门的后台线程定期地巡检待 Compact 的主题,看看是否存在满足条件的可删除数据。这个后台线程叫 Log Cleaner。很多实际生产环境中都出现过位移主题无限膨胀占用过多磁盘空间的问题,如果你的环境中也有这个问题,我建议你去检查一下 Log Cleaner 线程的状态,通常都是这个线程挂掉了导致的。

4. CommitFailedException处理

4.1 产生原因

所谓 CommitFailedException,顾名思义就是 Consumer 客户端在提交位移时出现了错误或异常,而且还是那种不可恢复的严重异常。产生原因有以下两种:

  • 当消息处理的总时间超过预设的 max.poll.interval.ms 参数值时,Kafka Consumer 端会抛出 CommitFailedException 异常。
  • 如果你的应用中同时出现了设置相同 group.id 值的消费者组程序和独立消费者程序,那么当独立消费者程序手动提交位移时,Kafka 就会立即抛出 CommitFailedException 异常(冷门)。

4.2 解决办法

  1. 缩短单条消息处理的时间。
  2. 增加 Consumer 端允许下游系统消费一批消息的最大时长,调整max.poll.interval.ms 的值。该参数的默认值是 5 分钟。
  3. 减少下游系统一次性消费的消息总数,调整max.poll.records 的值。当前该参数的默认值是 500 条。
  4. 下游系统使用多线程来加速消费。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值