Python编程里面函数的最难知识点, 迭代器与生成器!

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/fei347795790/article/details/96718798

15.迭代器:工具

1.可迭代对象:

官方声明,只要具有__iter__方法的就是可迭代对象
image

当然在学习Python的道路上肯定会困难,没有好的学习资料,怎么去学习呢?  学习Python中有不明白推荐加入交流群号:790921645 群里有志同道合的小伙伴,互帮互助,  群里有不错的视频学习教程和PDF!

list,dict,str,set,tuple – 可迭代对象,使用灵活

#方法一:
list.__iter__()
dict.__iter__()

#方法二:
查看源代码

#方法三:
print(dir(list))
#官方声明,只要具有__iter__方法的就是可迭代对象

2.迭代器:

官方声明:只要具有__iter__方法__next__方法就是迭代器

f = open("",'w')
f.__iter__()
f.__next__()

将可迭代对象,转换成迭代器

lst = [1,2,3,4,6]
new_lst = lst.__iter__()#将可迭代对象,转换成迭代器

new_lst.__iter__()
new_lst.__next__()
print(new_lst.__next__())#每次获取一个值,第一次获取第一个值,以后向后推

#自己写 for i in lst(): print(i)
lst = [1,2,3,4,6]
count = len(lst)
new_lst = lst.__iter__()
while count:
    print(new_lst.__next__())
    count -= 1
 #for的本质
lst = [1,2,3,4,6]
new_lst = lst.__iter__()
while 1:
    try:
       print(new_lst.__next__())
    except:
        break

3.总结:

可迭代对象:

优点:使用灵活,可以直接查看值

缺点:占内存,不能迭代值

迭代器:

优点:节省内存,惰性机制

缺点:使用不灵活,操作较繁琐,不能直接查看元素

迭代器的特性:

  1. 一次性的(用完就没有了)
  2. 不能后退
  3. 惰性机制(节省内存)

可迭代对象:具有__iter__()方法的

可迭代器:具有__iter__()方法和__next__()方法的

迭代器的使用时机:当容器中数据量较多的时候使用迭代器

16.生成器:

迭代器:python中内置的一中节省空间的工具

生成器的本质就是一个迭代器

生成器与迭代器的区别:

迭代器:python自带

生成器:程序员写的

写一个生成器:

将函数中的return改写成yield就是一个生成器,return和yield都是返回:

  1. return和yield都是返回
  2. return和yield都可以写多次
  3. return只执行一次,yield可执行多次
  4. 一个next对应一个yield,会记录停留的位置。超出会报错

g = func()#产生一个生成器

生成器可以使用for循环取值

yield from – 将可迭代对象的元素逐个返回

在函数内部,yield能将for循环和while循环进行暂停

def func():
    print(123)
    yield "你好"
    print(321)
    yield "我好"
print(func())
#结果:<generator object func at 0x000001913911F0A0>
g = func()
g.__inter__()
print(g.__next__())

#会记录停留的位置
def func():
    if 3 > 2:
        yield "你好"
    if 4 > 2:
        yield "我好"
    yield "大家好"
g = func()
print(g.__next__())
print(g.__next__())
print(g.__next__())
'''
结果:
你好
我好
大家好
'''

#for 循环
for i in g:
    print(i)

坑:会产生新的生成器

#每次都是新的生成器
print(foo().__next__())
print(foo().__next__())
#用赋值只产生一个生成器
g = foo()
def foo():
    for i in range(10):
        pass
    yield i
    count = 1
    while 1:
        yield count
        count += 1
g = foo()
#print(next(g))  = print(g.__next__()) --推荐使用next(g)
print(next(g))
print(next(g))
print(next(g))
#next可以在while中停住
'''
结果:
9
1
2
'''

seed() – 了解

#send()第一次只能传None,用于激活,否则会报错,以后可以传各种数据
def func():
    a = yield "send激活"
    print(a)
    b = yield "send开始"
g = func()
print(g.send(None))
print(g.send(123))

生成器应有场景:

#当有大量的数据时
def func():
    lst = []
    for i in range(1000000):
        lst.append(i)
    return lst
print(func())
#生成器改进
def func():
    for i in range(1000000):
        yield i
g = func()
for i in range(50):
    print(next(g))

yield from – 将可迭代对象逐个返回

def func():
    list1 = ["牛羊配","老奶奶花生米","卫龙","虾扯蛋","米老头","老干妈"]
    yield from list1  #yield list1 会直接返回整个列表
g = func()
print(next(g))
print(next(g))
'''
结果:
牛羊配
老奶奶花生米
'''

def func():
    list1 = ["牛羊配","老奶奶花生米","卫龙","虾扯蛋","米老头","老干妈"]
    lsit2 = ["小浣熊","老干爹","亲嘴烧","麻辣烫","黄焖鸡","井盖"]
    yield from list1
    yield from list2
g = func()
#将lsit1返回完,才会返回list2
print(next(g))
print(next(g))
print(next(g))
展开阅读全文

没有更多推荐了,返回首页