基本排序算法及分析(四):快速排序
快速排序:
1
/*----------------------------------------------------------------------------------------------
2Quick_sort.h
3快速排序:确定一个枢纽元,一次遍历后将数组划分成两个部分,第一部分均比枢纽元小
4 第二部分都比枢纽元大,然后对这两个数组进行快速排序,是一种递归的方法
5平均运行时间O(Nlog(N)),最坏运行时间O(N^2)
6最坏情形:对于预排序的序列。
7对与枢纽元相等的元素处理:
8 i,j都停止:会比较相等元素,但是可以划分成长度相当的两个子数组
9 i,j都不停止,不会比较相等元素,但是可能产生长度不平衡的两个子数组(与枢纽元相等的元素较多时)
10枢纽元的选取:
111. 选取第一个元素做枢纽元:对于(部分)预排序的序列运行时间O(N^2)
122. 随机生成枢纽元:能避免上述问题,但是产生枢纽元的代价高
133. 三数中值分割法:选取左端,右端,中间位置三个元素的中值
14----------------------------------------------------------------------------------------------*/
15 #ifndef QUICK_SORT_H
16 #define QUICK_SORT_H
17
18 #include " typedef.h " /* typedef int T 待排序的元素类型只要在这个文件中控制即可. */
19 #include " swap.h " /*交换两个元素值*/
20
21 /* 选取第一个元素做枢纽元的情形----返回枢纽元位置*/
22 int Quick_sort_divide(T * a, int begin, int end)
23 {
24 T key = a[begin];
25
26 while(begin < end)
27 {
28 while(begin < end && a[end] >= key) --end;
29 a[begin] = a[end]; //不能--end,下面循环还要给现在的end位置赋值呢!
30 //swap(a[begin],a[end]);
31 while(begin < end && a[begin] <= key) ++begin;
32 a[end] = a[begin];
33 //swap(a[begin],a[end]);
34 }
35 a[begin] = key;
36
37 return begin;
38}
39
40 /*三数中值割分法----选取枢纽元*/
41 const int & median3(T * a, int begin, int end)
42 {
43 int mid = (begin + end)/2;
44 //将三个位置的元素,按顺序摆好,一会儿begin,end位置的元素就无需参加比较
45 if(a[mid] < a[begin]) swap(a[mid],a[begin]);
46 if(a[end] < a[begin]) swap(a[end],a[begin]);
47 if(a[mid] > a[end]) swap(a[mid],a[end]);
48
49 swap(a[mid],a[end-1]); //将枢纽元放到倒数第二个位置
50 return a[end-1];
51}
52
53
54 /*三数中值分割法----分割:返回枢纽元位置*/
55 int Quick_sort_divide_3v(T * a, int begin, int end)
56 {
57 T key = median3(a,begin,end);
58 int tag = end - 1;
59 begin = begin + 1; //选取枢纽元时原begin位置的元素已设置成小于key的
60 end = end - 2; //原end位置值已设置成大于key的,end-1位置为key,都不用考虑
61 while(begin < end)
62 {
63 while(a[begin] < key) ++begin;
64 while(a[end] > key) --end;
65 if(begin < end) swap(a[begin],a[end]);
66 }
67 swap(a[begin],a[tag]);
68 return begin;
69}
70
71 /*一次分割*/
72 void Quick_sort_step(T * a, int begin, int end)
73 {
74 if(begin < end)
75 {
76 int k = Quick_sort_divide_3v(a,begin,end); //三数中值割分法
77 //int k = Quick_sort_divide(a,begin,end); //选第一个元素做枢纽元
78 Quick_sort_step(a,begin,k-1);
79 Quick_sort_step(a,k+1,end);
80 }
81}
82 /*快速排序*/
83 void Quick_sort(T * a, int n)
84 {
85 //if(n > 10) 当元素个数少时不必用快速插入法
86 Quick_sort_step(a,0,n-1);
87 //else Insertion_sort(a,n);
88}
89
90 #endif
2Quick_sort.h
3快速排序:确定一个枢纽元,一次遍历后将数组划分成两个部分,第一部分均比枢纽元小
4 第二部分都比枢纽元大,然后对这两个数组进行快速排序,是一种递归的方法
5平均运行时间O(Nlog(N)),最坏运行时间O(N^2)
6最坏情形:对于预排序的序列。
7对与枢纽元相等的元素处理:
8 i,j都停止:会比较相等元素,但是可以划分成长度相当的两个子数组
9 i,j都不停止,不会比较相等元素,但是可能产生长度不平衡的两个子数组(与枢纽元相等的元素较多时)
10枢纽元的选取:
111. 选取第一个元素做枢纽元:对于(部分)预排序的序列运行时间O(N^2)
122. 随机生成枢纽元:能避免上述问题,但是产生枢纽元的代价高
133. 三数中值分割法:选取左端,右端,中间位置三个元素的中值
14----------------------------------------------------------------------------------------------*/
15 #ifndef QUICK_SORT_H
16 #define QUICK_SORT_H
17
18 #include " typedef.h " /* typedef int T 待排序的元素类型只要在这个文件中控制即可. */
19 #include " swap.h " /*交换两个元素值*/
20
21 /* 选取第一个元素做枢纽元的情形----返回枢纽元位置*/
22 int Quick_sort_divide(T * a, int begin, int end)
23 {
24 T key = a[begin];
25
26 while(begin < end)
27 {
28 while(begin < end && a[end] >= key) --end;
29 a[begin] = a[end]; //不能--end,下面循环还要给现在的end位置赋值呢!
30 //swap(a[begin],a[end]);
31 while(begin < end && a[begin] <= key) ++begin;
32 a[end] = a[begin];
33 //swap(a[begin],a[end]);
34 }
35 a[begin] = key;
36
37 return begin;
38}
39
40 /*三数中值割分法----选取枢纽元*/
41 const int & median3(T * a, int begin, int end)
42 {
43 int mid = (begin + end)/2;
44 //将三个位置的元素,按顺序摆好,一会儿begin,end位置的元素就无需参加比较
45 if(a[mid] < a[begin]) swap(a[mid],a[begin]);
46 if(a[end] < a[begin]) swap(a[end],a[begin]);
47 if(a[mid] > a[end]) swap(a[mid],a[end]);
48
49 swap(a[mid],a[end-1]); //将枢纽元放到倒数第二个位置
50 return a[end-1];
51}
52
53
54 /*三数中值分割法----分割:返回枢纽元位置*/
55 int Quick_sort_divide_3v(T * a, int begin, int end)
56 {
57 T key = median3(a,begin,end);
58 int tag = end - 1;
59 begin = begin + 1; //选取枢纽元时原begin位置的元素已设置成小于key的
60 end = end - 2; //原end位置值已设置成大于key的,end-1位置为key,都不用考虑
61 while(begin < end)
62 {
63 while(a[begin] < key) ++begin;
64 while(a[end] > key) --end;
65 if(begin < end) swap(a[begin],a[end]);
66 }
67 swap(a[begin],a[tag]);
68 return begin;
69}
70
71 /*一次分割*/
72 void Quick_sort_step(T * a, int begin, int end)
73 {
74 if(begin < end)
75 {
76 int k = Quick_sort_divide_3v(a,begin,end); //三数中值割分法
77 //int k = Quick_sort_divide(a,begin,end); //选第一个元素做枢纽元
78 Quick_sort_step(a,begin,k-1);
79 Quick_sort_step(a,k+1,end);
80 }
81}
82 /*快速排序*/
83 void Quick_sort(T * a, int n)
84 {
85 //if(n > 10) 当元素个数少时不必用快速插入法
86 Quick_sort_step(a,0,n-1);
87 //else Insertion_sort(a,n);
88}
89
90 #endif