【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】
边缘检测之后,一般需要对图像进行二值化处理。简单地说,所谓的二值化,就是小于阈值的像素点全部设置为0,也就是黑色点;大于阈值的点,全部设置为255,也就是白色,逻辑还是比较简单的。大家也许会说,为什么要做这个操作?主要还是为了对相似的像素点进行归类使用,让相同属性的像素点靠在一起。
我们不妨挑一个像素值120作为阈值,看看二值化后的lena图像是什么样子的,

如图所示,做了二值化后的lena,只有白色和黑色两种像素点。除了一些噪声点之外,大部分临近的点都被组合到了一起,这样比较有利于后期的分割处理。
1、二值化算法
单看二值化算法,还是比较简单的。本身就是对所有的像素点遍历下,小于某一个阈值,设置为0;大于某一个阈值,设置为255。代码如下所示,
'''
binary image
'''
def generate_binary_image(picture, threshold):
for i
本文介绍了图像处理中的二值化技术,通过设定阈值将像素点分为黑色和白色,便于后期图像分割处理。文章讲解了二值化的简单算法,并提出使用图像平均灰度作为阈值的方法。二值化作为图像处理的重要步骤,有助于清晰化图像并归类像素。
订阅专栏 解锁全文
1171

被折叠的 条评论
为什么被折叠?



