python图像处理(二值化)

本文介绍了图像处理中的二值化技术,通过设定阈值将像素点分为黑色和白色,便于后期图像分割处理。文章讲解了二值化的简单算法,并提出使用图像平均灰度作为阈值的方法。二值化作为图像处理的重要步骤,有助于清晰化图像并归类像素。

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

        边缘检测之后,一般需要对图像进行二值化处理。简单地说,所谓的二值化,就是小于阈值的像素点全部设置为0,也就是黑色点;大于阈值的点,全部设置为255,也就是白色,逻辑还是比较简单的。大家也许会说,为什么要做这个操作?主要还是为了对相似的像素点进行归类使用,让相同属性的像素点靠在一起。

        我们不妨挑一个像素值120作为阈值,看看二值化后的lena图像是什么样子的,

         如图所示,做了二值化后的lena,只有白色和黑色两种像素点。除了一些噪声点之外,大部分临近的点都被组合到了一起,这样比较有利于后期的分割处理。

1、二值化算法

        单看二值化算法,还是比较简单的。本身就是对所有的像素点遍历下,小于某一个阈值,设置为0;大于某一个阈值,设置为255。代码如下所示,

'''
binary image
'''

def generate_binary_image(picture, threshold):
    for i
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式-老费

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值