题目:
给你一天Google搜索日志,你怎么设计算法找出是否有一个搜索词,它出现的频率占所有搜索的一半以上?如果肯定一个搜索词占大多数,你能怎么提高你的算法找到它,再假定搜索日志就是内存中的一个数组,能否有O(1)的空间,O(n)时间的算法?
题目分析:
如果没有O(1)的空间,O(n)时间的要求的话我们可以有很多的办法来解决这个问题,比如可以用排序方法将数组排序后然后再找出其中位数即是我们要找的单词(时间复杂度为nlogn),或者构造一个hash,hash名为各个搜索词,hash值为搜索词出现的次数(通过遍历搜索词,出现的搜索词相应则加1),这样就能找到最大的搜索词。
但是题目要求算法O(1)的空间,O(n)时间。一般情况下O(n)时间复杂度都是去遍历长度为n的数组一遍,这里我们也不例外。
我们可以遍历数组,并把遍历到的值作为当前值,并记其首次出现的时候help值为1,如果下一个数仍然和它相同则help值加1,否则减1,如果其个数为负的则记当前遍历的这个值为当前值,并置help值为1。因为题目中有保证说该搜索值肯定会占一半以上,所以遍历完后当前值肯定是要搜索的结果,并且help值大于0。
给你一天Google搜索日志,你怎么设计算法找出是否有一个搜索词,它出现的频率占所有搜索的一半以上?如果肯定一个搜索词占大多数,你能怎么提高你的算法找到它,再假定搜索日志就是内存中的一个数组,能否有O(1)的空间,O(n)时间的算法?
题目分析:
如果没有O(1)的空间,O(n)时间的要求的话我们可以有很多的办法来解决这个问题,比如可以用排序方法将数组排序后然后再找出其中位数即是我们要找的单词(时间复杂度为nlogn),或者构造一个hash,hash名为各个搜索词,hash值为搜索词出现的次数(通过遍历搜索词,出现的搜索词相应则加1),这样就能找到最大的搜索词。
但是题目要求算法O(1)的空间,O(n)时间。一般情况下O(n)时间复杂度都是去遍历长度为n的数组一遍,这里我们也不例外。
我们可以遍历数组,并把遍历到的值作为当前值,并记其首次出现的时候help值为1,如果下一个数仍然和它相同则help值加1,否则减1,如果其个数为负的则记当前遍历的这个值为当前值,并置help值为1。因为题目中有保证说该搜索值肯定会占一半以上,所以遍历完后当前值肯定是要搜索的结果,并且help值大于0。
用js代码写出来的结果便是:
function getMostWord(wordsAry){
var curWord = wordsAry[0],
helpNum = 1;
var i = 1,
len = wordsAry.length;
for(;i<len;i++){
if(wordsAry[i] === curWord){
helpNum++;
}else{
helpNum--;
}
if(helpNum === 0){
curWord = wordsAry[i];
helpNum = 1;
}
}
return curWord;
}
console.log(getMostWord(["a","b","c","a","d","e","a","a","b","a","f","a","a","a","b"]));//"a"