YOLOv8 改进:添加 CGAttention 注意力机制(级联群体注意力机制)

YOLOv8 改进:添加 CGAttention 注意力机制(级联群体注意力机制)

引言

在目标检测领域,YOLO(You Only Look Once)系列因其快速和高效的特性而备受推崇。随着场景复杂性的增加以及对更精细特征提取的需求,引入新的注意力机制可以显著增强模型性能。CGAttention(级联群体注意力机制)通过多层次关注不同尺度的特征,为 YOLOv8 提供了新的改进方向。

技术背景

CGAttention 是一种融合了级联策略和群体注意力的机制。它利用多个注意力模块以级联形式组合,从而在不同尺度上捕获和强调输入特征的重要性。这种方式不仅提高了模型在细节上的敏感度,还增强了全局信息的整合能力。

应用使用场景

  • 智能交通系统:识别和跟踪多类车辆和行人。
  • 无人机监控:在动态且多变的自然环境中检测移动物体。
  • 生物医疗影像分析:在复杂组织结构中识别病变区域。
  • 工业自动化检测:在生产线上精准识别产品缺陷。

原理解释

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值