YOLOv8 改进:添加 CGAttention 注意力机制(级联群体注意力机制)
引言
在目标检测领域,YOLO(You Only Look Once)系列因其快速和高效的特性而备受推崇。随着场景复杂性的增加以及对更精细特征提取的需求,引入新的注意力机制可以显著增强模型性能。CGAttention(级联群体注意力机制)通过多层次关注不同尺度的特征,为 YOLOv8 提供了新的改进方向。
技术背景
CGAttention 是一种融合了级联策略和群体注意力的机制。它利用多个注意力模块以级联形式组合,从而在不同尺度上捕获和强调输入特征的重要性。这种方式不仅提高了模型在细节上的敏感度,还增强了全局信息的整合能力。
应用使用场景
- 智能交通系统:识别和跟踪多类车辆和行人。
- 无人机监控:在动态且多变的自然环境中检测移动物体。
- 生物医疗影像分析:在复杂组织结构中识别病变区域。
- 工业自动化检测:在生产线上精准识别产品缺陷。