docker多容器创建和配置ssh对外服务 运行bash generate_docker_compose.bash脚本,然后docker-compose up -d来开启这些容器就好。再创建一个名为generate_docker_compose.bash生成docker-compose.yml的脚本。之前ssh不能随着容器启动而启动于是乎就写个start.sh脚本来帮助启用。首先创建一个start.sh脚本来打开ssh服务。其次创建Dockerfile。
ubuntu上安装docker desktop #从指定 URL 下载 Docker 在 Ubuntu 上的 GPG 密钥,然后将其以文本格式保存到 /etc/apt/keyrings/docker.gpg 文件中,以便后续在系统中验证 Docker 软件包的真实性。如果是以前没有安装过任何的docker产品(没安装docker),则需要先配置docker仓库,以后安装和更新什么的都是通过docker仓库。#安装目录在etc.apt/keyrings下面,-d是指明路径的。上的方法安装dockerdesktop。然后安装docker。
在winserver上部署kms激活服务器 1、一台Windows服务器操作系统(Windows Server 2012、2016、2019均可),安装好相关的服务;6)在“服务”中找到“容器服务”和“Docker服务”两个服务,并按右键,选择“启用”。3)打开“程序和功能”功能,选择“启用或关闭Windows功能”。4)在“服务器管理工具”中勾选“容器”的相关组件。2)右键点击“开始”菜单,进入“控制面板”。其中,指自定的KMS激活服务器的域名。其中,/ato是激活KMS服务的命令。5)打开“管理工具”,进入“服务”。
ubuntu新版本网络配置没有interfaces 新的ubuntu中不再使用interfaces去配置网络,而是使用netplan来配置网络,详细见官网链接:Ubuntu Bionic: Netplan | Ubuntu
tf2.7使用keras.utils.image_dataset_from_directory报错没有属性image_dataset_from_directory 点开utils的源代码发现是from tensorflow.python.keras.preprocessing.image_dataset import image_dataset_from_directory故直接使用tensorflow.python.keras.preprocessing.image_dataset import image_dataset_from_directory
tensorflow引入tensorflow_hub报错ImportError: cannot import name ‘MomentumParameters‘ from ‘tensorflow.py 更新tensorflow后便不报错了
keras文件读取 import tensorflow as tfimport tensorflow.keras as kerasimport matplotlib.pyplot as pltimport osimport PILimport pathlibimport mathimport randomimport numpy as npimport shutilimport PIL# 划出测试图像def div_train_test(data_dir): data_dir = pathli.
用preprocessing.image_dataset_from_directory处理数据后送入VGG16 import tensorflow as tfimport tensorflow.keras as kerasimport matplotlib.pyplot as pltimport osimport PILimport pathlibimport numpy as npdata_dir=('data-class')data_dir=pathlib.Path(data_dir)image_count=len(list(data_dir.glob('*/*')))print(image.
tf2多种方式对图像数据集进行预处理 import tensorflow as tfimport tensorflow.keras as kerasimport matplotlib.pyplot as pltAUTOTUNE=tf.data.experimental.AUTOTUNE#用CPU动态设置并行调用的数量import pathlib#示例将从url上下载的数据进行处理# data_root_orig=keras.utils.get_file(origin='https://storage.googleapis.com/.
pytorch入门笔记 张量的创建:1.直接创建:torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)从data创建tensordata: 数据,可以是list,numpydtype: 数据类型,默认与data的一致device: 所在设备,cuda/cpurequires_grad: 是否需要梯度pin_memory: 是否存于锁页内存torch.tensor([[1,4],[2,