【第一周】明尼达推荐系统课程

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/feng_zhiyu/article/details/90147267

课程介绍

在这里插入图片描述

四个课程

  1. 针对非个性化和基于内容的推荐人;
  2. 着眼于最近邻协同过滤技术;
  3. 侧重于评估和 指标,同时关注以数据为中心和以用户为中心的评估;
  4. 着眼于矩阵分解技术,以及 其他先进技术和主题。

使用LensKit工具包试验不同的推荐算法实施的编程任务。 LensKit是Java中的开源推荐工具包。 并预测论坛中可能出现的问题。

  • 第一,LensKit做了大量的提升,所以我们不必要求您编写尽可能多的代码。

  • 第二,让一切都在标准化的环境中 使我们能够以一种允许我们交付的方式对它们进行分级这些在开放互联网上的任务。

MovieLens

它是一个非个性化基于内容的推荐系统。

非个性化:提供购买或查看或购买物品的基本建议的系统手表,根本不考虑用户是谁。
在这里插入图片描述

MovieLens的历史

在这里插入图片描述

MovieLens数据集 是完全描述人们如何评价电影的数据,在2014年下载的次数超过140,000次,而关键字“movielens”目前在Google学术搜索中的结果超过8,900次

偏好和评级

在这里插入图片描述

介绍

  • 我们需要收集数据(用户喜欢什么,什么聚在一起等等);
  • 从用户那儿以某种方式收集数据;
  • 此节演讲主题:收集什么数据,收集的方法以及这些数据意味着什么;
    在这里插入图片描述

学习目标

  • 理解推荐者能用来了解用户喜欢什么的数据;
  • 确定从用户收集的数据类型;
  • 了解什么类型的数据是可能并且合适的;
  • 能够识别可能用在一个系统中的首选项数据类型。
展开阅读全文

电商推荐系统_课程简介

05-15

<span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br /><br /><span style="color:#404040;">打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br /><br /><span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br /><br /><span style="color:#404040;">适合人群:</span><br /><span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员</span><br /><span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span>

000_机器学习和推荐系统_课程简介

05-18

<p>rn 本教程为官方授权出品rn</p>rn<p>rn <br />rn</p>rn<p>rn <span style="color:#404040;">伴随着大数据时代的到来,作为发掘数据规律的重要手段,机器学习已经受到了越来越多的关注。而作为机器学习算法在大数据上的典型应用,推荐系统已成为各行业互联网公司营销体系中不可或缺的一部分,而且已经带来了真实可见的收益。</span><br />rn<br />rn<span style="color:#404040;">目前,推荐系统和机器学习已经成为各大公司的发力重点,众多知名公司(如亚马逊、netflix、facebook、阿里巴巴、京东、腾讯、新浪、头条等)都在着眼于将蕴含在庞大数据中的宝藏发掘出来,懂机器学习算法的大数据工程师也成为了新时代最紧缺的人才。</span><br />rn<br />rn<span style="color:#404040;">精心打造出了机器学习与推荐系统课程,将机器学习理论与推荐系统项目实战并重,对机器学习和推荐系统基础知识做了系统的梳理和阐述,并通过电影推荐网站的具体项目进行了实战演练,为有志于增加大数据项目经验、扩展机器学习发展方向的工程师提供更好的学习平台。</span><br />rn<br />rn<span style="color:#404040;">本课程主要分为两部分,机器学习和推荐系统基础,与电影推荐系统项目实战。</span><br />rn<span style="color:#404040;">第一部分主要是机器学习和推荐系统基础理论的讲解,涉及到各种重要概念和基础算法,并对一些算法用Python做了实现;</span><br />rn<br />rn<span style="color:#404040;">第二部分以电影网站作为业务应用场景,介绍推荐系统的开发实战。其中包括了如统计推荐、基于LFM的离线推荐、基于模型的实时推荐、基于内容的推荐等多个模块的代码实现,并与各种工具进行整合互接,构成完整的项目应用。</span><br />rn<span style="color:#404040;">通过理论和实际的紧密结合,可以使学员对推荐系统这一大数据应用有充分的认识和理解,在项目实战中对大数据的相关工具和知识做系统的回顾,并且可以掌握基本算法,入门机器学习这一前沿领域,为未来发展提供更多的选择,打开通向算法工程师的大门。</span><br />rn<br />rn<span style="color:#404040;">谁适合学:</span><br />rn<span style="color:#404040;">1. 有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br />rn<span style="color:#404040;">2. 有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br />rn<span style="color:#404040;">3. 有较好的数学基础,希望学习机器学习和推荐系统相关算法的求职人员</span> rn</p>

01_电商推荐系统_课程简介

05-18

<p>rn 本教程为官方授权出品rn</p>rn<p>rn <br />rn</p>rn<p>rn <span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br />rn<br />rn<span style="color:#404040;">量身定制打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br />rn<br />rn<span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br />rn<br />rn<span style="color:#404040;">适合人群:</span><br />rn<span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br />rn<span style="color:#404040;">2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br />rn<span style="color:#404040;">3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员</span><br />rn<span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span> rn</p>

没有更多推荐了,返回首页