零零散散学算法之详解几种数据存储结构

影响空间规模的几种数据存储结构

正文
            所谓数据存储结构,就是数据的元素与元素之间在计算机中的一种表示,它的目的是为了解决空间规模问题,或者是通过空间规模问题从而间接地解决时间规模问题。我们知道,随着输入的数据量越来越大,在有限的内存里,不能把这些数据完全的存下来,这就对数据存储结构和设计存储的算法提出了更高的要求。

       本文将介绍几种存储结构,分别为链式结构、树形结构、图结构以及矩阵结构。

第一节 链式存储结构

       所谓链式存储结构,一般就是用一个头指针指向链表的第一个节点,如果你要增加新的存储元素时,只需在已有节点的后面插入新结点即可。

       链表通常有单链表、双链表、循环链表。在这,我只介绍单链表,双链表和循环链表只是单链表的拓展罢了。下图就是一个简单的单链表图示。

单链表的类型描述如下代码:
typedef char DataType;	/***假设结点的数据域类型为字符***/
typedef struct node{	/***结点类型定义***/
	DataType data;		/***结点的数据域***/
	struct node *next;	/***结点的指针域***/
	}ListNode;
	typedef ListNode *LinkList;
	ListNode *p;
	LinkList head;
附注:	
	① LinkList和ListNode *是不同名字的同一个指针类型(命名的不同是为了概念上更明确)
	② LinkList类型的指针变量head表示它是单链表的头指针
	③ ListNode *类型的指针变量p表示它是指向某一节点的指针

下面我们来看单链表的操作:创建节点、增加节点、删除节点、查询、修改。

1.创建节点:声明一个节点并为其申请一段内存空间,此节点有数据域和指针域。
node = (struct List *)malloc(sizeof(struct List));

2.增加节点:插入节点,分为头插入、尾插入和非头尾插入。
    ①. 在表头插入节点如图

插入头节点的代码如下:
if(p == head)	/***其中p为链表中的某一节点***/
{
	struct list *s = NULL;
	s = (struct list *)malloc(sizeof(struct list));	/***申请空间***/
	s->DataNumber = data;	/***为节点s的数据域赋值***/

	/***将节点s插入表头***/
	s->next = p;
	head = s;
}

  ②. 在表尾插入节点如图

插入尾节点的代码如下:
if(p->next == NULL)	/***其中p为链表中的某一节点***/
{
	struct list *s = NULL;
	s = (struct list *)malloc(sizeof(struct list));	/***申请空间***/
	s->DataNumber = data;	/***为节点s的数据域赋值***/
	
	/***将节点s插入表尾***/
	p->next = s;
	s->next = NULL;
}

  ③. 在表中插入非头尾节点如图

插入非头尾节点的代码如下:
struct list *s = NULL;
s = (struct list *)malloc(sizeof(struct list));	/***申请空间***/
s->DataNumber = data;	/***为节点s的数据域赋值***/

/***将节点s插入表中***/
s->next = p;	/***其中p为链表中的某一节点***/
q->next = s;	/***其中q为链表中p节点的前一个节点***/

3.删除节点:分为删除头结点,删除尾节点,删除头尾节点。


①. 删除表头结点如图

删除头结点的代码如下:
if(p == head)	/***p指向链表中的某一节点***/
{
	head = p->next;
}

②. 删除表尾节点,如图

附注说明:上图中删完尾节点之后,新链表的尾节点下标应为n-1。不过由于作图时只做了尾节点,故用图中的n2节点代替。

删除尾节点的代码如下:

if(p->next == NULL)	/***p指向链表中的某一节点***/
{
	q->next = NULL;	/***q指向链表中的p节点的前一节点**/
}

③. 删除非头尾节点,如图

删除非头尾节点的代码如下:

q->next = p->next;	/***p指向链表中的某一节点,q指向链表中的p节点的前一节点***/

4.查询节点:在链表中找到你想要找的那个节点。此操作是根据数据域的内容来完成的。查询只能从表头开始,当要找的节点的数据域内容与当前不相符时,只需让当前节点指向下一结点即可,如此这样,直到找到那个节点。

附注:此操作就不在这用图和代码说明了。


5.修改节点:修改某个节点数据域的内容。首先查询到这个节点,然后对这个节点数据域的内容进行修改。
附注:同上


       ok,链表的几种操作介绍完了,接下来我们来总结一下链表的几个特点。

       链式存储结构的特点:
              1.易插入,易删除。不用移动节点,只需改变节点中指针的指向。
              2.查询速度慢:每进行一次查询,都要从表头开始,速度慢,效率低。

扩展阅读
链表:http://public.whut.edu.cn/comptsci/web/data/512.htm


第二节 树形存储结构

       所谓树形存储结构,就是数据元素与元素之间存在着一对多关系的数据结构。在树形存储结构中,树的根节点没有前驱结点,其余的每个节点有且只有一个前驱结点,除叶子结点没有后续节点外,其他节点的后续节点可以有一个或者多个。

如下图就是一棵简单的树形结构:

       说到树形结构,我们最先想到的就是二叉树。我们常常利用二叉树这种结构来解决一些算法方面的问题,比如堆排序、二分检索等。所以在树形结构这节我只重点详解二叉树结构。那么二叉树到底是怎样的呢?如下图就是一颗简单的二叉树:

附注:有关树的概念以及一些性质在此不做解释,有意者请到百科一览。


二叉树的类型描述如下:

typedef struct tree
{
	char data;
	struct tree * lchild, * rchild;	/***左右孩子指针***/
}tree;

二叉树的操作:创建节二叉树,创建节点,遍历二叉树,求二叉树的深度。

1.创建二叉树:声明一棵树并为其申请存储空间。

struct tree * T = NULL;
T = (struct tree *)malloc(sizeof(struct tree));

2.创建节点:除根节点之外,二叉树的节点有左右节点之分。

创建节点的代码如下:

struct tree * createTree()
{
	char NodeData;
	scanf(" %c", &NodeData);
	if(NodeData == '#')
		return NULL;
	else
	{
		struct tree * T = NULL;
		T = (struct tree *)malloc(sizeof(struct tree));
		T->data = NodeData;
		T->lchild = createTree();
		T->rchild = createTree();
		return T;
	}
}

3.遍历二叉树:分为先序遍历、中序遍历、后续遍历。

    ①.先序遍历:若二叉树非空,则依次执行如下操作:
                    (1) 访问根结点;
                    (2) 遍历左子树;
                    (3) 遍历右子树。

如图:

先序遍历的代码如下:

void PreTravser(struct tree * T)
{
	if(T == NULL)
		return;
	else
	{
		printf("%c",T->data);
		PreTravser(T->lchild);
		PreTravser(T->rchild);
	}
}

②.中序遍历:若二叉树非空,则依次执行如下操作:
                 (1)遍历左子树;
                 (2)访问根结点;
                 (3)遍历右子树。
如图:

中序遍历的代码如下:

void MidTravser(struct tree * T)
{
	if(!T)
	{
		return;
	}
	else
	{
		MidTravser(T->lchild);
		printf("%c",T->data);
		MidTravser(T->rchild);
	}
}

③.后续遍历:若二叉树非空,则依次执行如下操作:
                 (1)遍历左子树;
                 (2)遍历右子树;
                 (3)访问根结点。

如图:

后续遍历的代码如下:
void PostTravser(struct tree * T)
{
	if(!T)
		return;
	else
	{
		PostTravser(T->lchild);
		PostTravser(T->rchild);
		printf("%c->",T->data);
	}
}

4.求二叉树的深度:树中所有结点层次的最大值,也称高度。
二叉树的深度表示如下图:

求二叉树深度的代码如下:
int treeDeepth(struct tree * T)
{
	int i, j;
	if(!T)
		return 0;
	else
	{
		if(T->lchild)
			i = treeDeepth(T->lchild);
		else
			i = 0;
		
		if(T->rchild)
			j = treeDeepth(T->rchild);
		else
			j = 0;
	}
	return i > j? i+1:j+1; 
}

好了,二叉树的几种操作介绍完了。

拓展阅读
二叉树:http://student.zjzk.cn/course_ware/data_structure/web/DOWNLOAD/%CA%FD%BE%DD%BD%E1%B9%B9%D3%EB%CB%E3%B7%A82.htm
赫夫曼编码:http://blog.csdn.net/fengchaokobe/article/details/6969217

第三节 图型存储结构
       所谓图形结构,就是数据元素与元素之间的关系是任意的,任意两个元素之间均可相关,即每个节点可能有多个前驱结点和多个后继结点,因此图形结构的存储一般是采用链接的方式。图分为有向图和无向图两种结构,如下图


       通过图,我们可以判断两个点之间是不是具有连通性;通过图,我们还可以计算两个点之间的最小距离是多少;通过图,我们还可以根据不同的要求,寻找不同的合适路径。

1.图的结构有好几种,在实际应用中需根据具体的情况选择合适的结点结构和表结构。常用的有数组结构、邻接表。
   ①.数组结构
   数组结构的类型描述如下:
typedef char VertexType;	/***顶点类型***/
typedef int EdgeType;	/***边权值类型***/
#define maxvex 100	/***顶点的最大个数***/

typedef struct
{
	VertexType vexs[maxvex];	/***顶点个数***/
	EdgeType arc[maxvex][maxvex];	/***两顶点构成边的权值***/
}Mgraph;
附注:当前图为无向图时,图中某两个顶点VA和VB构成一条边时,其权值可表示为EdgeType arc[VA][VB];当前图为有向图时,图中某两个顶点VA和VB构成一条边时,并且是由VA指向VB,其权值可表示为EdgeType arc[VA][VB],如果是由VB指向VA,其权值可表示为EdgeType arc[VB][VA]。

   ②.邻接表
   邻接表的类型描述如下:
typedef char VertexType;   // 顶点类型
typedef int EdgeType;     //边权值类型

typedef struct EdgeNode  //边表节点
{
   int adjvex;              //邻接点域,存储该顶点对应的下标
   EdgeType weight;         //用于存储权值
   struct EdgeNode *next;   //链域,指向下一个邻接点
}EdgeNode;

typedef struct VertexNode   //顶点表节点
{
   VertexType data;       //顶点域,存储顶点信息
   EdgeNode * firstedge;  //边表头指针
}VertexNode,AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes,numEdges;   //图当前顶点数和边数
}GraphAdjList;

2.图的遍历:从图中的某一节点出发访问图中的其余节点,且使每一节点仅被访问一次。图的遍历算法是求解图的连通性问题、拓扑排序和求路径等算法的基础。图的遍历分为深度优先遍历和广度优先遍历,且它们对无向图和有向图均适用。

   ①. 深度优先遍历
   定义说明:假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点V为初始出发点,则深度优先遍历可定义如下:首先访问出发点V,并将其标记为已访问过;然后依次从V出发搜索v的每个邻接点W。若W未曾访问过,则以W为新的出发点继续进行深度优先遍历,直至图中所有和源点V有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

深度遍历过程如下图:


②. 广度优先遍历
   定义说明:假设从图中某顶点V出发,在访问了V之后一次访问V的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中还有顶点未被访问,则另选图中一个未曾被访问的顶点作为起始点,重复上述过程,直至图中所有顶点都被访问到为止。换句话说,广度优先遍历图的过程是以V为起点,由近至远,依次访问和V有路径相同且路径长度为1,2,...的顶点。


广度遍历过程如下图:


扩展阅读
最小生成树:Prim算法,Kruskal算法
最短路径:Dijkstra算法,Floyd算法


第四节 结束语
       想想,写写,画画......

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页