NLP&深度学习:基于TensorFlow实现Skip-Gram模型

作者丨天雨粟

知乎专栏丨机器不学习

地址丨https://zhuanlan.zhihu.com/p/27296712

前言

本篇文章将利用TensorFlow来完成Skip-Gram模型。还不是很了解Skip-Gram思想的小伙伴可以先看一下上一篇的专栏内容。

本篇实战代码的目的主要是加深对Skip-Gram模型中一些思想和trick的理解。由于受限于语料规模、语料质量、算法细节以及训练成本的原因,训练出的结果显然是无法跟gensim封装的Word2Vec相比的,本代码适合新手去理解与练习Skip-Gram模型的思想。

工具介绍

  • 语言:Python 3

  • 包:TensorFlow(1.0版本)及其它数据处理包(见代码中)

  • 编辑器:jupyter notebook

  • 线上GPU:floyd

  • 数据集:经过预处理后的维基百科文章(英文)

正文部分

文章主要包括以下四个部分进行代码构造:

- 数据预处理
- 训练样本构建
- 模型构建
- 模型验证

1 数据预处理

关于导入包和加载数据在这里就不写了,比较简单,请参考git上的代码。


数据预处理部分主要包括:

  • 替换文本中特殊符号并去除低频词

  • 对文本分词

  • 构建语料

  • 单词映射表

首先我们定义一个函数来完成前两步,即对文本的清洗和分词操作。

上面的函数实现了替换标点及删除低频词操作,返回分词后的文本。

下面让我们来看看经过清洗后的数据:

有了分词后的文本,就可以构建我们的映射表,代码就不再赘述,大家应该都比较熟悉。

我们还可以看一下文本和词典的规模大小:

整个文本中单词大约为1660万的规模,词典大小为6万左右,这个规模对于训练好的词向量其实是不够的,但可以训练出一个稍微还可以的模型。

2 训练样本构建

我们知道skip-gram中,训练样本的形式是(input word, output word),其中output word是input word的上下文。为了减少模型噪音并加速训练速度,我们在构造batch之前要对样本进行采样,剔除停用词等噪音因素。

采样

在建模过程中,训练文本中会出现很多“the”、“a”之类的常用词(也叫停用词),这些词对于我们的训练会带来很多噪音。在上一篇Word2Vec中提过对样本进行抽样,剔除高频的停用词来减少模型的噪音,并加速训练。

我们采用以下公式来计算每个单词被删除的概率大小:


其中代表单词的出现频次。为一个阈值,一般介于1e-3到1e-5之间。

上面的代码计算了样本中每个单词被删除的概率,并基于概率进行了采样,现在我们手里就拿到了采样过的单词列表。

构造batch

我们先来分析一下skip-gram的样本格式。skip-gram不同于CBOW,CBOW是基于上下文预测当前input word。而skip-gram则是基于一个input word来预测上下文,因此一个input word会对应多个上下文。我们来举个栗子“The quick brown fox jumps over lazy dog”,如果我们固定skip_window=2的话,那么fox的上下文就是[quick, brown, jumps, over],如果我们的batch_size=1的话,那么实际上一个batch中有四个训练样本。

上面的分析转换为代码就是两个步骤,第一个是找到每个input word的上下文,第二个就是基于上下文构建batch。

首先是找到input word的上下文单词列表:

我们定义了一个get_targets函数,接收一个单词索引号,基于这个索引号去查找单词表中对应的上下文(默认window_size=5)。请注意这里有一个小trick,我在实际选择input word上下文时,使用的窗口大小是一个介于[1, window_size]区间的随机数。这里的目的是让模型更多地去关注离input word更近词。

我们有了上面的函数后,就能够轻松地通过input word找到它的上下文单词。有了这些单词我们就可以构建我们的batch来进行训练:

注意上面的代码对batch的处理。我们知道对于每个input word来说,有多个output word(上下文)。例如我们的输入是“fox”,上下文是[quick, brown, jumps, over],那么fox这一个batch中就有四个训练样本[fox, quick], [fox, brown], [fox, jumps], [fox, over]。

3 模型构建

数据预处理结束后,就需要来构建我们的模型。在模型中为了加速训练并提高词向量的质量,我们采用负采样方式进行权重更新。

输入层到嵌入层

输入层到隐层的权重矩阵作为嵌入层要给定其维度,一般embeding_size设置为50-300之间。

嵌入层的lookup通过TensorFlow中的embedding_lookup实现。

嵌入层到输出层

在skip-gram中,每个input word的多个上下文单词实际上是共享一个权重矩阵,我们将每个(input word, output word)训练样本来作为我们的输入。为了加速训练并且提高词向量的质量,我们采用negative sampling的方法来进行权重更新。

TensorFlow中的sampled_softmax_loss,由于进行了negative sampling,所以实际上我们会低估模型的训练loss。

请注意代码中的softmax_w的维度是vocab_size x embedding_size,这是因为TensorFlow中的sampled_softmax_loss中参数weights的size是[num_classes, dim]。

4 模型验证

在上面的步骤中,我们已经将模型的框架搭建出来,下面就让我们来训练训练一下模型。为了能够更加直观地观察训练每个阶段的情况。我们来挑选几个词,看看在训练过程中它们的相似词是怎么变化的。

训练模型:

在这里注意一下,尽量不要经常去让代码打印验证集相似的词,因为这里会多了一步计算步骤,就是计算相似度,会非常消耗计算资源,计算过程也很慢。所以代码中我设置1000轮打印一次结果。

从最后的训练结果来看,模型还是学到了一些常见词的语义,比如one等计数词以及gold之类的金属词,animals中的相似词也相对准确。

为了能够更全面地观察我们训练结果,我们采用sklearn中的TSNE来对高维词向量进行可视化。(具体代码见git)

上面的图中通过TSNE将高维的词向量按照距离远近显示在二维坐标系中,该图已经在git库中,想看原图的小伙伴去git看~

我们来看一下细节:

上面是显示了整张大图的局部区域,可以看到效果还不错。

关于提升效果的技巧:

增大训练样本,语料库越大,模型学习的可学习的信息会越多。

增加window size,可以获得更多的上下文信息。

增加embedding size可以减少信息的维度损失,但也不宜过大,我一般常用的规模为50-300。

附录:

git代码中还提供了中文的词向量计算代码。同时提供了中文的一个训练语料,语料是我从某招聘网站上爬取的招聘数据,做了分词和去除停用词的操作(可从git获取),但语料规模太小,训练效果并不好。

上面是我用模型训练的中文数据,可以看到有一部分语义被挖掘出来,比如word和excel、office很接近,ppt和project、文字处理等,以及逻辑思维与语言表达等,但整体上效果还是很差。一方面是由于语料的规模太小(只有70兆的语料),另一方面是模型也没有去调参。如果有兴趣的同学可以自己试下会不会有更好的效果。

备注:公众号菜单包含了整理了一本AI小抄非常适合在通勤路上用学习

往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习在线手册深度学习在线手册AI基础下载(pdf更新到25集)备注:加入本站微信群或者qq群,请回复“加群”获取一折本站知识星球优惠券,请回复“知识星球”

喜欢文章,点个在看

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Skip-gram是一种用于自然语言处理的模型,它的目的是根据中心词来预测周围的上下文。数据预处理是Skip-gram模型的重要步骤之一,下面将介绍Skip-gram模型的数据预处理过程。 Skip-gram模型的数据预处理过程如下: 1. 首先,需要读取语料库中的所有文本,并将它们转换为小写形式。 2. 接着,需要分词,将每个句子切分成单词或标点符号。这里可以使用分词工具如jieba等。 3. 然后,需要建立词表,将所有不同的单词或标点符号映射到一个唯一的整数值,这个整数值称为词汇表中单词的索引。 4. 接下来,需要将每个句子中的单词转换为对应的索引,以便后续的训练过程中可以直接使用索引来访问每个单词的向量表示。 5. 最后,需要将数据转换成Skip-gram模型所需的输入和输出格式。具体来说,输入是中心单词的索引,输出是上下文单词的索引列表。Skip-gram模型的输入是一个中心词,它会根据窗口大小选择上下文单词。 下面是一个简单的Python代码示例,用于实现Skip-gram模型的数据预处理过程: ```python import jieba # 读取语料库中的文本 with open('corpus.txt', 'r', encoding='utf-8') as f: corpus = f.read().lower() # 分词 sentences = [list(jieba.cut(line.strip())) for line in corpus.split('\n')] # 建立词表 vocab = {} for sentence in sentences: for word in sentence: if word not in vocab: vocab[word] = len(vocab) # 将单词转换为索引 indexed_sentences = [[vocab[word] for word in sentence] for sentence in sentences] # 将数据转换成Skip-gram模型所需的输入和输出格式 window_size = 2 X, y = [], [] for sentence in indexed_sentences: for i, word in enumerate(sentence): for j in range(max(0, i - window_size), min(len(sentence), i + window_size + 1)): if j != i: X.append(word) y.append(sentence[j]) ``` 以上是一个简单的Skip-gram模型的数据预处理过程示例,实际应用中可能需要进行更复杂的处理,以适应不同的任务和数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值