Python math 模块提供了许多对浮点数的数学运算函数。主要包括以下几个部分
数论与表示函数
幂函数与对数函数
三角函数
角度转换
双曲函数
特殊函数
常量
import math
print(dir(math))
[ 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma',
'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']
注意:上面的函数是不能直接访问的,需要导入 math 模块,通过静态对象调用该方法。
数论与表示函数
ceil()
描述:向上取整数,返回 x 的上限,即大于或者等于 x 的最小整数
语法:math.ceil(x)
import math#需要导入数学模块
math.ceil(5.1)
6
math.ceil(5.0)
5
math.ceil(5.8)
6
copysign()
描述:返回一个基于 x 的绝对值和 y 的符号的浮点数。在支持带符号零的平台上,copysign(1.0, -0.0) 返回 -1.0.
语法:math.copysign(x, y)
math.copysign(1,-1)
-1.0
math.copysign(-1,-1)
-1.0
math.copysign(-1,1)
1.
fabs()
描述:返回数字的绝对值
语法:math.fabs( x )
math.fabs(-45.17)
45.17
math.fabs(100)
100.0
math.fabs(math.pi)
3.14159265358979
factorial()
描述:以一个整数返回 x 的阶乘。如果 x 不是整数或为负数时则将引发 ValueError。
语法:math.factorial( x )
math.factorial(5)#1*2*3*4*5
120
math.factorial(3)#1*2*3
6
floor()
描述:返回 x 的向下取整,小于或等于 x 的最大整数。如果 x 不是浮点数,则委托 x.__floor__() ,它应返回 Integral 值。
语法:math.floor( x )
math.floor(1.2)
1
math.floor(1.99)
1
fmod()
描述:返回余数,函数 fmod() 在使用浮点数时通常是首选,而Python的 x % y 在使用整数时是首选。
语法:math.fmod(x, y)
math.fmod(10, 3)
1.0
math.fmod(8, 3)
2.0
math.fmod(8.2, 3)
2.199999999999999
frexp()
描述:返回 x 的尾数和指数作为对``(m, e)``。 m 是一个浮点数, e 是一个整数,正好是 x == m * 2**e 。如果 x 为零,则返回 (0.0, 0) ,否则返回 0.5 <= abs(m) < 1 。这用于以可移植方式“分离”浮点数的内部表示。
语法:math.frexp(x)
math.frexp(32)
(0.5, 6)
fsum()
描述:对迭代器里的每个元素进行求和操作,返回迭代中的精确浮点值。通过跟踪多个中间部分和来避免精度损失
语法:math.fsum( x )
math.fsum((1,2,3,4))
10.0
math.fsum([1,2,3,4])
10.0
sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
math.fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1
gcd()
描述:返回整数 a 和 b 的最大公约数。如果 a 或 b 之一非零,则 gcd(a, b) 的值是能同时整除 a 和 b 的最大正整数。gcd(0, 0) 返回 0。
语法:math.gcd( x,y)
math.gcd(12,6)
6
math.gcd(15,25)
5
isclose()
描述:若 a 和 b 的值比较接近则返回 True,否则返回 False。根据给定的绝对和相对容差确定两个值是否被认为是接近的。
语法:math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
rel_tol 是相对容差 —— 它是 a 和 b 之间允许的最大差值,相对于 a 或 b 的较大绝对值。例如,要设置5%的容差,请传递 rel_tol=0.05 。默认容差为 1e-09,确保两个值在大约9位十进制数字内相同。 rel_tol 必须大于零。
abs_tol 是最小绝对容差 —— 对于接近零的比较很有用。 abs_tol 必须至少为零。
如果没有错误发生,结果将是:abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) 。
IEEE 754特殊值 NaN , inf 和 -inf 将根据IEEE规则处理。具体来说, NaN 不被认为接近任何其他值,包括 NaN 。inf 和 -inf 只被认为接近自己。
math.isclose(1.0,1.0000000000001)
True
math.isclose(1.0,1.000000001)
False
isfinite()
描述:如果 x 既不是无穷大也不是NaN,则返回 True ,否则返回 False 。(注意 0.0 被认为 是 有限的。)
语法:math.isfinite(x)
math.isfinite(2)
True
math.isfinite(math.nan)
False
math.isfinite(math.inf)
False
isinf()
描述:如果 x 是正或负无穷大,则返回 True ,否则返回 False 。
语法:math.isinf()
math.isinf(math.inf)
True
math.isinf(-math.inf)
True
isnan()
描述:如果 x 是 NaN(不是数字),则返回 True ,否则返回 False 。
语法:math.isnan(x)
math.isnan(math.nan)
True
ldexp()
描述:返回 x * (2**i) 。这基本上是函数 frexp() 的反函数。
语法:math.ldexp(x, i)
math.ldexp(5, 3)
40.0
5 * (2**3)
40
modf()
描述:返回 x 的小数和整数部分。两个结果都带有 x 的符号并且是浮点数。
语法:math.modf(x)
math.modf(3.71828)
(0.71828, 3.0)
remainder()
描述:返回 IEEE 754 风格的 x 相对于 y 的余数
语法:math.remainder(x, y)
math.remainder(14, 5)
-1.0
math.remainder(13, 5)
-2.0
math.remainder(12, 5)
2.0
math.remainder(11, 5)
1
trunc()
描述:返回 Real 值 x 截断为 Integral (通常是整数)
语法:math.trunc(x)
math.trunc(3.718281828459045)
3
幂函数与对数函数
exp()
描述:返回 e 次 x 幂,其中 e = 2.718281... 是自然对数的基数。这通常比 math.e ** x 或 pow(math.e, x) 更精确。
语法:math.exp( x )
注意:exp()是不能直接访问的,需要导入 math 模块,通过静态对象调用该方法。
math.exp(1)
2.718281828459045
math.exp(0)
1.0
math.exp(3)
20.08553692318766
expm1()
描述:返回 e 的 x 次幂,减1。这里 e 是自然对数的基数。对于小浮点数 x , exp(x) - 1 中的减法可能导致 significant loss of precision; expm1() 函数提供了一种将此数量计算为全精度的方法
语法:math.expm1(x)
math.exp(1e-5) - 1
1.0000050000069649e-05
math.expm1(1e-5)
1.0000050000166667e-05
math.expm1(1)
1.718281828459045
math.expm1(2)
6.3890560989306
log()
描述:使用一个参数,返回 x 的自然对数(底为 e )。
语法:math.log(x[,base])
参数:
x -- 数值表达式。
base -- 可选,底数,默认为 e。
math.log(math.e)
1.0
math.log(20)
2.995732273553991
math.log(100,10)#返回以10为底的对数
2.
log1p()
描述:返回 1+x (base e) 的自然对数。以对于接近零的 x 精确的方式计算结果。
语法:math.log1p(x)
math.log1p(1)
0.6931471805599453
log2()
描述:返回 x 以2为底的对数。这通常比 log(x, 2) 更准确。
语法:math.log2(x)
math.log2(8)
3.0
log10()
描述:返回 x 底为10的对数。这通常比 log(x, 10) 更准确。
语法:math.log10( x )
math.log10(100)
2.0
math.log10(1000)
3.0
pow()
描述:返回 (x的y次方) 的值。与内置的 ** 运算符不同, math.pow() 将其参数转换为 float 类型。使用 ** 或内置的 pow() 函数来计算精确的整数幂。
语法:math.pow( x, y )
math.pow( 2, 4 )
16.0
math.pow( 10, 2 )
100.0
sqrt()
描述:返回数字x的平方根。
语法:math.sqrt( x )
math.sqrt(4)
2.0
math.sqrt(100)
10.0
math.sqrt(7)
2.6457513110645907
math.sqrt(math.pi)
1.77245385090551
三角函数
acos()
描述:以弧度为单位返回 x 的反余弦值。
语法:math.acos(x)
math.acos(.5)
1.0471975511965979
asin()
描述:以弧度为单位返回 x 的反正弦值。
语法:math.asin(x)
math.asin(.5)
0.5235987755982989
atan()
描述:以弧度为单位返回 x 的反正切值。
语法:math.atan(x)
math.atan(1)
0.7853981633974483
atan2()
描述:以弧度为单位返回 atan(y / x) 。结果是在 -pi 和 pi 之间。从原点到点 (x, y) 的平面矢量使该角度与正X轴成正比。 atan2() 的点的两个输入的符号都是已知的,因此它可以计算角度的正确象限。例如, atan(1) 和 atan2(1, 1) 都是 pi/4 ,但 atan2(-1, -1) 是 -3*pi/4 。
语法:math.atan2(y, x)
math.atan2(1, 1)
0.7853981633974483
math.pi/4
0.7853981633974483
cos()
描述:返回 x 弧度的余弦值。
语法:math.cos(x)
math.cos(math.pi/6)
0.8660254037844387
hypot()
描述:返回欧几里德范数, sqrt(x*x + y*y) 。这是从原点到点 (x, y) 的向量长度。
语法:math.hypot(x, y)
math.hypot(1, 1)
1.4142135623730951
sin()
描述:返回 x 弧度的正弦值。
语法:math.sin(x)
math.sin(math.pi/6)
0.49999999999999994
tan()
描述:返回 x 弧度的正切值。
语法:math.tan(x)
math.tan(math.pi/4)
0.9999999999999999
角度转换
degrees()
描述:将角度 x 从弧度转换为度数。
语法:math.degrees(x)
math.degrees(math.pi)
180.0
math.degrees(3)
171.88733853924697
radians()
描述:将角度 x 从度数转换为弧度。
语法:math.radians(x)
math.radians(180)
3.141592653589793
双曲函数
双曲函数 是基于双曲线而非圆来对三角函数进行模拟。
acosh()
描述:返回 x 的反双曲余弦值。
语法:math.acosh(x)
math.acosh(3)
1.762747174039086
asinh()
描述:返回 x 的反双曲正弦值。
语法:math.asinh(x)
math.asinh(1)
0.8813735870195429
atanh()
描述:返回 x 的反双曲正切值。
语法:math.atanh(x)
math.atanh(0.5)
0.5493061443340549
cosh()
描述:返回 x 的双曲余弦值。
语法:math.cosh(x)
math.cosh(2)
3.7621956910836314
sinh()
描述:返回 x 的双曲正弦值。
语法:math.sinh(x)
math.sinh(1)
1.1752011936438014
tanh()
描述:返回 x 的双曲正切值。
语法:math.tanh(x)
math.tanh(3)
0.9950547536867305
特殊函数
erf()
描述:返回 x 处的 error function 。
语法:math.erf(x)
math.erf(1)
0.8427007929497149
erf() 函数可用于计算传统的统计函数,如 累积标准正态分布
def phi(x):
return (1.0 + erf(x / sqrt(2.0))) / 2.0
erfc()
描述:返回 x 处的互补误差函数。 互补错误函数 定义为 1.0 - erf(x)。它用于 x 的大值,从其中减去一个会导致 有效位数损失。
语法:math.erfc(x)
math.erfc(1)
0.1572992070502851
gamma()
描述:返回 x 处的 伽马函数 值。
语法:math.gamma(x)
math.gamma(4)
6.0
lgamma()
描述:返回Gamma函数在 x 绝对值的自然对数。
语法:math.lgamma(x)
math.lgamma(4)
1.7917594692280554
常 量
pi
描述:圆周率。数学常数 π = 3.141592...,精确到可用精度。
语法:math.pi
math.pi
3.141592653589793
e
描述:数学常数 e = 2.718281...,精确到可用精度。
语法:math. e
math.e
2.718281828459045
tau
描述:数学常数 τ = 6.283185...,精确到可用精度。Tau 是一个圆周常数,等于 2π,圆的周长与半径之比
语法:math.tau
math.tau
6.283185307179586
inf
描述:浮点正无穷大。(对于负无穷大,使用 -math.inf 。)相当于``float('inf')`` 的输出。
语法:math.inf
math.inf
inf
nan
描述:浮点“非数字”(NaN)值。相当于 float('nan') 的输出。
语法:math.nan
math.nan
nan
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑AI基础下载(pdf更新到25集)机器学习的数学基础专辑本站qq群1003271085,加入微信群请回复“加群”获取一折本站知识星球优惠券,复制链接直接打开:https://t.zsxq.com/yFQV7am喜欢文章,点个在看