【Python】如何依据变量维度选取合适图表?

如何依据数据变量个数选取合适图表?

本文将分享当数据包含2个、3个、4个、大于等于5个变量的情况时,如何选取图表,科学展示数据!

文中图形代码,大多之前👆分享过,有需要可以去翻一翻,文中图片部分来自网络侵删!


大于等于5个变量

如何在一张图中展示大于等于5个变量的数据?

方案1、自定义图形
自己尝试创造一个可视化图形,举个例子,在研究“生活指数”相关影响因素时,定制花形可视化图案,b83271dbabd7d60e9c508281700cc230.png其中每个“花瓣”对应一个影响因素变量(如住房、收入、就业等),颜色会根据每个变量中的值按比例变化。

方案2、雷达图
雷达图通常用于展示哪些变量具有类似的值或每个变量中是否存在离群值。这类图表上的每个变量都有一个坐标轴,沿着所有轴绘制一个多边形。由于雷达图使用极坐标网格,因此它们在跨变量比较值时不如使用笛卡尔坐标系的图表直观5dc0857ae1c95ba4fd20ace7d4013eee.png

方案3、平行坐标图
平行坐标图非常适合同时比较多个变量,并且展示变量之间的关系。在平行坐标图中,每个变量都被分配到一个坐标轴,并将其值绘制成连接所有轴的一系列线条。例如,您可以比较不同计算机或汽车型号的规格(在一系列产品中比较规格)。03be22b0bad30cf56bbd3044af482802.png

方案4、脸谱图

脸谱图用人脸的形式呈现多变量数据,很有意思,使用脸谱的具体特征(眼睛、耳朵、嘴巴和鼻子的形状、大小、位置和方向)反映数据的数值大小。人们普遍认为,人类能够轻松地辨认面孔并轻易地察觉微小的变化。然而,脸谱图的有效性经常受到怀疑和批评。

88b719ce20f6a7fe3ea2d2f8e807d33a.png


4个变量

如何在一张图中展示4个变量的数据?

方案1、三元气泡相图

通过改变数据点区域的大小来创建一个四变量的三元气泡图。2248f6bab95dc869ff1bf9037ed71039.png

方案2、三元等高线相图

为三元相图添加第四个变量的另一种方法是使用等高线图。06a863baf363fb65d021179aa4e6bdd9.png

方案3、彩色阴影气泡图

气泡图中可以根据第四个变量的数值比例对气泡进行着色。831222ce99eefe4d96d03bb092436ce4.png


3个变量

如何在一张图中展示3个变量的数据?

方案1、等高线图

等高线图用于展示三个数值变量之间关系的二维图形。其中X轴和Y轴用于绘制两个变量,第三个变量则使用Z轴绘制等高线水平线。等高线水平线绘制为曲线,它们之间的区域可以通过色彩编码来指示插值数值。c57e4a50f603f9334262494b2cc9fa09.png

方案2、相关矩阵

通过将圆圈按比例着色来在相关矩阵中展示第三个变量。

22102461e2ff955914fb5bc962689371.png

方案3、三元相图

三元相图是一种三角形的图表,用于绘制具有三个变量的数据,其中这三个变量的总和保持恒定。这种可视化是通过沿着三个坐标轴(使用重心坐标)放置一个点来表示这三个变量之间的比例关系 。c6d840091c3968d74ab8a496bb235c9a.png

方案4、气泡图

功能与散点图完全相同,但增加了第三个变量,即根据第三个变量的比例来改变 "气泡 "的大小。ef68a1805d166dacb07a098cd846c871.png


2个变量

如何在一张图中展示3个变量的数据?

方案1、散点图及其6类变种当有大量数据点在一张图中散点图展示时,会出现大量散点重叠在一起,以下介绍6种解决方法:

6种方案,破解大数据散点图overlap!

4adcc196dae39e40339217e806e36f0a.png

方案2、连接散点图

连接散点图显示了随时间变化的两个变量之间的关系。与散点图类似,每个轴都是一个变量的刻度,但不同的是,点代表时间上的位置,并且每个点之间通过线条连接以显示演变过程。c30b40660229871b5a05ca8f283f4dc9.png

方案3、相关矩阵

一种展示一组变量之间相关系数的矩阵,两个变量之间相关性的强度由它们相交单元格内圆圈的面积大小表示。d464d74791a69a74bd1dbd429aace741.png

方案4、热力图

与相关矩阵类似,热力图可以可视化一组变量之间的相关系数。与相关矩阵不同的是,热力图会根据两个变量之间的数值强度,将表格单元格着色。e0050bc5d223d45d08efffa38682a3bc.pngref:https://datavizcatalogue.com/blog/selecting-a-chart-based-on-the-number-of-variables/

-END-

 
 

7910bacea74678d5b665e68485d9aadc.jpeg

 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值