2024年,大模型这些方向再次卷疯了!

本文介绍了Anthropic发布的Claude3系列模型,该模型在多模态、语言能力等方面全面超越GPT-4,尤其在处理复杂任务时展现出接近人类的水平。文章还提到大模型训练的新进展,如多模态情感分析、知识图谱增强和模型微调方法,以及未来企业应用的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2024年,大模型再次卷疯了!就在近日,Anthropic发布的Claude 3系列模型,已经实现了对GPT-4的全面超越。

大模型(LLMs)是一种人工智能模型,旨在理解和生成人类语言。大模型通过在大量的文本数据上进行训练,可以执行广泛的任务,包括文本总结、翻译、情感分析等等。

为了更好地让大家了解大模型时下爆火热点并抓住机遇,我们邀请顶会审稿人/workshop、高校教授/博导、大厂算法研究员等大牛联合授课,带来2024年最新大模型系列课程合集,限时免费领!

扫码免费领取课程

赠200+大模型论文合集&精选论文带读课程

966966643d6c0ffafbc81be5f66be0a5.png

(文末福利)

cefbd37c16fef0a5eaf91c0c8583471a.gif

授课ppt&论文合集部分展示

系列课程概览

01 大模型时代的多模态情感分析

1.多模态情感分析中的预训练大模型介绍

2.针对多模态情感分析的大模型训练

3.使用大模型的多模态情感分析案例研究

02 多模态学习-大模型开启AI新时代

1.如何快速训练自己的多模态AI大模型

2.后AI时代,多模态的研究方向和热点

03 惊艳的大模型高效参数微调法

1.大模型微调-任务特定的P-tuning

2.大模型微调-任务/模型无关的LORA

3.大模型微调方法-Peft库使用实践(实战篇)

04 知识图谱增强的LLM

1.知识图谱组成要素及其分类

2.知识图谱和 LLM 融合路线3.知识图谱增强 LLM 的方法

05惊艳的文本生成视频大模型

1.目前主流视频生成模式

2.主流模式的缺点

3.工作原理及优点

16f427957edd471f15e63db3493323c9.jpeg

扫码免费领取课程

赠200+大模型论文合集&精选论文带读课程

3e77cadb2506ded5b8bff61d1286d680.png

LLM 带来的巨大进步,所能产生的效果是之前我们大多数人都没有能预见到的。究其原因,一是使用大数据大模型大算力,规模带来了质的变化。ChatGPT 有 175B 参数,300B 的 token 做训练。而之前的模型参数规模超过 1B 的都不多。二是 Open AI 开发出了一套调教大模型的方法,包括基本步骤、技巧和工程实现。利用语言建模的机制将人的知识和能力输入给大模型。大规模系统的工程实现和模型的调教方法成了 Open AI 的核心竞争力。这一点可以从相关技术的演进过程中看出。

44841129966cfa9c56316d416d05e649.png

Anthropic发布了最新的Claude 3系列模型,一句话评价:真·全面碾压GPT-4!

多模态和语言能力指标上,Claude 3都赢麻了。用Anthropic的话说,Claude 3系列模型在推理、数学、编码、多语言理解和视觉方面,都树立了新的行业基准!

1a07ebb20926f5051c7b4e9738e20dba.png

Opus,是Claude 3系列中最先进的模型。

它在多项AI系统常用评估标准,包括本科级别专业知识(MMLU)、研究生级别专家推理(GPQA)、基础数学(GSM8K),均取得领先业界LLM的性能。尤其是,Opus在处理复杂任务时,展现了几乎与人类相媲美的理解和表达能力,是AGI领域的领跑者。Claude 3系列模型在分析预测、创建细微内容、代码生成,以及用西班牙语、日语、法语等非英语语言交流的能力上都实现了显著进步。

394e4d624ce11abc49db3b799cc399af.png

Anthropic表示,LLM智能的潜力还远未被挖掘。

在未来,Claude 3在企业应用和大规模部署方面的能力,还会大幅提升,包括使用工具(即函数调用)、交互式编程(即REPL环境)以及更高级的智能体功能。

扫码免费领取课程

赠200+大模型论文合集&精选论文带读课程

c5b82a242434f4f3ca85a040e4e9532e.png

de4d4b573df23265b5c1c595a2bed82e.png

文末福利

69043d0f707d6acb7d44129df0f57d96.png

给大家送一波大福利!我整理了100节计算机全方向必学课程,包含CV&NLP&论文写作经典课程,限时免费领!

b81ddb99a3ff1064947fcb3768566ce7.jpeg

8efd854efd0752e787d18baf6ab2ada3.jpeg

476bd1f0c75b9754ed78a807ec9771b6.png

立即扫码 赠系列课程

END

<think>好的,用户想了解2025CVPR大会在目标检测领域的最新研究成果和论文。首先,我需要查看提供的参考文献,看看是否有直接相关的信息。不过,根据给出的引用内容,大部分是关于CVPR 2024和2025的投稿情况、录用率,以及自动驾驶、强化学习等其他领域的信息。引用1提到CVPR 2024论文集,引用2和5讨论2025的录用结果和投稿趋势,引用3关于自动驾驶在CVPR中的热度,引用4是强化学习论文合集,引用5再次提到CVPR 2025的投稿情况。 用户的问题是关于2025CVPR的目标检测进展,但提供的引用中没有具体提到目标检测的论文或研究成果。因此,我需要基于现有信息进行合理推断,并结合领域发展趋势来回答。虽然不能直接引用具体论文,但可以预测可能的研究方向,例如结合大模型、多模态、端到端学习等趋势,并参考引用3提到的自动驾驶中的感知技术,这可能与目标检测相关。 另外,需要注意用户可能对如何获取这些论文或投稿建议感兴趣,可以建议关注CVPR官方渠道和相关学术平台。同时,根据引用5,CVPR 2025的投稿数量可能继续增长,录用率低,竞争激烈,这可能影响目标检测领域的研究方向和创新性。 最后,需要确保回答结构清晰,分点说明可能的研究方向,并附上相关问题,同时正确使用引用标注。由于没有直接相关的引用,可能需要避免错误引用,或指出当前信息有限,建议后续关注官方发布。</think>### 2025CVPR大会目标检测研究进展分析 截至当前(2024),CVPR 2025的论文录用结果尚未公布(最终结果将于20251月23日通知),但根据计算机视觉领域的发展趋势和CVPR 2024的热点方向,可以推测目标检测领域在2025的潜在研究重点[^3][^5]: #### 1. **多模态目标检测** - 结合视觉语言模型(VLMs)的检测框架,例如利用CLIP等预训练模型提升开放世界目标检测能力,解决传统模型对未见过类别的泛化问题。 - 文本引导的检测任务,如通过自然语言指令动态调整检测范围。 #### 2. **高效检测算法** - 轻量化模型设计:面向边缘设备的实时检测,如改进YOLO系列或提出新型轻量级架构。 - 自监督/半监督学习:减少对标注数据的依赖,通过对比学习或生成模型提升小样本场景下的性能[^4]。 #### 3. **三维目标检测与自动驾驶** - 基于激光雷达(LiDAR)和多相机融合的3D检测方法,提升复杂场景下的物体定位精度(与自动驾驶感知模块强相关)。 - 时序动态检测:利用视频序列中的运动信息优化检测鲁棒性。 #### 4. **可解释性与鲁棒性** - 对抗攻击防御:研究检测模型对对抗样本的鲁棒性改进。 - 不确定性量化:在检测结果中输出置信度估计,辅助下游决策系统。 #### 5. **端到端检测范式** - 借鉴DETR系列模型的Transformer架构,优化查询设计和训练效率,可能结合扩散模型生成检测结果。 --- ### 获取最新论文的途径 1. **CVPR 2025官方论文集**(待20256月会议召开后发布) 2. **预印本平台**:关注arXiv的`cs.CV`板块,搜索关键词如"CVPR 2025 object detection" 3. **顶级实验室动态**:如FAIR、Google Research、商汤等团队的最新成果 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值