Graph Wavelet Neural Network

论文介绍了GraphWaveletNeuralNetwork (GWNN),一种基于小波基的图神经网络,用于解决SpectralCNN在效率和局部特征表示上的问题。GWNN通过小波变换实现高效特征提取,降低计算开销,实验证明在半监督节点分类任务上表现出色。
摘要由CSDN通过智能技术生成

论文标题

Graph Wavelet Neural Network

论文来源

ICLR 2019, 论文PDF

论文代码

https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork

1 背景梳理

对于自然界中广泛存在的非欧式拓普数据,即图(Graph),的研究得到了广泛关注,为了有效提取图的特征表达,图神经网络(GNN)等一类优秀的模型被提出,并适用于广泛的应用场景,如社交网络、推荐系统、智慧医疗以及城市规划。谱域卷积网络(SpectralCNN)是图神经网络中的一个典型模型,基于图信号的傅里叶变化,对图信号进行滤波和特征提取。然而 SpectralCNN 存在若干问题,包括:


i SpectralCNN 的建模必须基于图拉普拉斯矩阵的特征值分解,然而该运算的时间复杂度是巨大的,降低了该模型的效率和实用性。
ii SpectralCNN 中的傅里叶基向量是稠密的,在大规模图运算中无法通过稀疏矩阵的进行加速,降低了该模型的效率。
iii SpectralCNN 中的傅里叶基向量倾向于表示全局性的信号,不够突出局部化特征,难以得到更清晰有效的表达,降低了该模型的学习效果。


为了解决上述问题,本文提出一种基于小波基的图神经网络,成为图小波神经网络(Graph Wavelet Neural Network, GWNN)。【通过把 SpectralCNN 中的傅里叶基转化为小波基,并设计一个高效的特征提取方法】,GWNN可以有效地学习局部化的、稀疏的特征表达,同时提升网络的表达效果和运算效率。

2 论文贡献

1)算法思想

采用小波基向量来替代原始 SpectralCNN 中的傅里叶基,从而基于图信号的小波变换进行模式分析和特征提取。基于小波基GWNN的优势表现在,稀疏高效和特征清晰。

2)网络设计

提出一种创新的图小波神经网络(Graph Wavelet Neural Network, GWNN),采用双层网络结构,每层结构均采用基于小波变换的图信号分析。另外,原理性的GWNN仍具备较大的参数量,从而容易导致巨大的计算开销和guo’ni’h以及设计了一种高效的算法,将特征提取和图卷积进行解耦,提升运算效率。

3)实验效果

在 Cora, Citeseer 和 Pubmed 三个数据集上进行了半监督节点分类任务,经测试,GWNN 均超过一系列优秀的前人工作。对小波基和特征提取进行了细节分析,观测到他们具有充分的稀疏性,验证了本文假设。

3 方法

给定一个含有 N N N个节点的图结构以及相应的图信号 G ( V , E , X ) G(\mathcal{V},\mathcal{E},\mathbf{X}) G(V,E,X),其中, X ∈ R N × 1 \mathbf{X}\in\mathbb{R}^{N \times 1} XRN×1 表示该图结构上的一个图信号向量。图拉普拉斯矩阵(Graph Laplacian)度量了图结构的变化和不平滑程度,可以定义为 L = D − A ∈ R N × N \mathbf{L}=\mathbf{D}-\mathbf{A}\in\mathbb{R}^{N \times N} L=DARN×N,其中 A \mathbf{A} A表示图的邻接矩阵, D \mathbf{D} D为度矩阵。 L \mathbf{L} L有一个常用的归一化形式: L = I − D − 1 / 2 A D − 1 / 2 \mathcal{L}=\mathbf{I}-\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2} L=ID1/2AD1/2。通过对图拉普拉斯矩阵的特征分解,我们可以得到适用于该图结构的傅里叶基向量及其对应的频谱成分,即,
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中 U ∈ R N × N \mathbf{U}\in\mathbb{R}^{N \times N} URN×N 表示由傅里叶基向量构成的基矩阵,表示了该图结构所蕴含频谱成分; Λ ∈ R N × N \mathbf{\Lambda}\in\mathbb{R}^{N \times N} ΛRN×N 表示特征值矩阵,越大特征值对应的傅里叶基表示频率越高的成分。

对于该图结构上的一个图信号 X ∈ R N × 1 \mathbf{X}\in\mathbb{R}^{N \times 1} XRN×1,该信号的图傅里叶变换可以表示为 X ^ = U ⊤ X \hat{\mathbf{X}} = \mathbf{U}^{\top}\mathbf{X} X^=UX;相应的,图傅里叶反变换为 X = U X ^ {\mathbf{X}} = \mathbf{U}\hat{\mathbf{X}} X=UX^。因此,基于图傅里叶变换的图卷积被定义为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
U ⊤ Y \mathbf{U}^{\top}\mathbf{Y} UY 建模为可学习的参数 g θ g_{\theta} gθ,则谱域卷积网络 SpectralCNN 被建立。

上文提及,图结构的傅里叶基有诸多问题,本文提出用小波基来代替图卷积中的傅里叶基。原理上,小波基可以表达为
ψ s = U G s U ⊤ , \psi_s = \mathbf{U}\mathbf{G}_s\mathbf{U}^{\top}, ψs=UGsU,
其中 G s = diag ( e s λ 1 , … , e s λ N ) \mathbf{G}_s = \textrm{diag}(e^{s\lambda_1}, \dots, e^{s\lambda_N}) Gs=diag(esλ1,,esλN), s s s是一个尺度系数,描述了小波基信号的不同尺度。小波基比传统的傅里叶基具有更高的稀疏性和局部性。小波基可以由 Chebyshev 多项式近似表示从而高效的获得。给定小波基,图卷积运算可以被表达为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
进一步,假设输入一个p维图信号 X ∈ R N × p \mathbf{X}\in\mathbb{R}^{N \times p} XRN×p,为了得到一个q维图信号 Y ∈ R N × q \mathbf{Y}\in\mathbb{R}^{N \times q} YRN×q 基于小波基的可训练的图卷积被定义为,
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中 F i , j \mathbf{F}_{i,j} Fi,j 是一个对角矩阵,对角线上每个元素表示一个可训练的网络参数, h ( ⋅ ) h(\cdot) h() 表示非线性的激活函数,可以采用 ReLU 或 softmax 函数。值得注意的是,上述表达式所需要的参数量为 O ( N × p × q ) \mathcal{O}(N \times p \times q) O(N×p×q),他针对每个节点的每个输入输出维度均分配独立的参数,造成了巨大的计算开销和过拟合风险。为了降低上述隐患,本文提出一种高效的计算方法,即将基于小波基的图卷积解耦为特征变换和图卷积两个步骤,分别表示为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中, W ∈ R p × q \mathbf{W}\in\mathbb{R}^{p \times q} WRp×q表示一个可训练的参数矩阵,该矩阵对每个节点是共享的。由此网络的参数量由 O ( N × p × q ) \mathcal{O}(N \times p \times q) O(N×p×q)下降为 O ( N + p × q ) \mathcal{O}(N + p \times q) O(N+p×q)

4 实验

为了验证GWNN的表达能力、稀疏性和运算效率,本文在三个数据集:Cora、Citeseer 和 Pubmed 上执行了半监督节点分类任务。三个数据集的相关信息如Table 1所示。

为了验证本文提出的特征变换-图卷积解耦方法的高效性,作者发现在现有设备上无法承载GWNN的原始版图卷积运算,于是就在 ChebyNet 上进行了实验,并测试了采用解耦方法或不解耦方法的网络表达能力和参数量,结果如Table 2所示。可以看出,通过解耦算法可以大幅降低网络参数,并一定程度上提升了节点分类的准确率,降低了过拟合。

接下来是将GWNN与state-of-the-art方法进行对比,在三个数据集上的半监督节点分类结果再Table 3中被展示,可以看出,GWNN可以超过大量的传统图信号处理方法和新兴的多种图神经网络方法。

最后,本文验证了 GWNN 的稀疏性。首先,将小波基和傅里叶基中不为0的元素进行了统计,可以发现小波基中不为0的元素数目和在整个基向量中的占比远低于傅里叶基。接着,验证了小波变换后的图信号和傅里叶变换后的图信号的稀疏情况,可以得到类似的结论。充分证明了GWNN的稀疏性以及可以进行大规模图信号处理的潜在效率。

5 总结

本文提出一种创新的图小波神经网络GWNN,采用小波基替代传统的傅里叶基,对图信号进行变换和特征提取。为了提升网络的运算效率,还在网络中提出一种 特征变换-图卷积解耦操作,可以大幅提升运算效率并降低过拟合隐患。在半监督节点分类任务上进行了实验,充分验证了GWNN的表达效果、运算效率和稀疏性。

参考文献

[1] J. Bruna et al. Spectral networks and locally connected networks on graphs. ICLR 2014.
[2] M. Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS 2016.
[3] B. Xu et al. Graph wavelet neural network. ICLR 2019
[4] D. Hammond et al. Wavelets on graphs via spectral graph theory. App. Comp. Harmo. Analysis, 30 (2). 2011

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值