如果说 Python 在 14 年后的“崛起”,得益于机器学习和数学统计应用的兴起。那为什么 Python 如此适合数学统计和机器学习呢?那么 Jupyter Notebook 则是功不可没!
磨刀不误砍柴工,高效的工具让我们的编程事半功倍。这一节课,我们就来学习下 Jupyter Notebook,为后面的 Python 学习打下必备基础。
1、什么是 Jupyter Notebook?
按照Jupyter 创始人 Fernando Pérez的说法,他最初的梦想是做一个综合 Ju (Julia)、Py (Python)和 R 三种科学运算语言的计算工具平台,所以将其命名为Ju-Py-te-R。发展到现在,Jupyter 已经成为一个几乎支持所有语言,能够把软件代码、计算输出、解释文档、多媒体资源整合在一起的多功能科学运算平台。
英文里说一图胜千言(A picture is worth a thousand words)。看下面这个图片,你就明白什么是Jupyter Notebook了。
你在一个框框中直接输入代码,运行,它立马就在下面给你输出。怎么样,是不是很酷?你可能会纳闷儿,这样一个看起来“华而不实”的玩意儿,真的就成了 Python 社区的颠覆者吗?说实话放在几年前我也是不信的。所以 Jupyter Notebook 的影响究竟有多大呢?
2、Jupyter Notebook 的影响力
Jupyter Notebook 在数据科学、教育、科研和软件开发等多个领域的影响力不可小觑。以下是 Jupyter Notebook 的一些主要影响力方面:
(1)推动数据科学的发展
Jupyter Notebook 为数据科学家提供了一个强大的工具,使他们能够轻松地进行数据分析、建模和可视化。其交互式环境和可视化支持使得数据科学家能够快速迭代和测试他们的想法,从而加速了数据科学的发展。
(2)教育和学习
Jupyter Notebook 被广泛应用于教育领域,许多大学和在线课程(如 Coursera、edX 和 Udacity)都使用它来教授编程、数据科学和机器学习等课程。通过 Jupyter,学生可以在一个环境中同时编写代码和撰写文档,提升了学习的互动性和实践性。
(3)科研和学术交流
在科研领域,Jupyter Notebook 使得研究人员能够以可重复的方式记录和分享他们的分析过程。研究人员可以将数据分析、结果和解释整合在一个文档中,方便他人理解和复现研究结果。这种透明性有助于推动科学研究的可信度和可重复性。
(4)支持可视化和交互式报告
Jupyter Notebook 的可视化能力使得研究者和分析师能够创建动态的、可交互的报告。这种能力不仅提高了数据展示的效果,还使得非技术背景的利益相关者能够更好地理解数据和结果。
(5)推动机器学习和人工智能的发展
Jupyter Notebook 是机器学习和人工智能领域的一个标准工具。许多流行的机器学习库(如 TensorFlow、PyTorch 和 Scikit-learn)都与 Jupyter Notebook 兼容,研究人员和开发者可以在 Notebook 中快速构建、训练和测试模型。
(6)企业和行业应用
越来越多的企业开始使用 Jupyter Notebook 进行数据分析、报告生成和模型开发。它的易用性和灵活性使得企业能够快速响应市场变化,进行数据驱动的决策。
(7)促进数据科学工具的整合
Jupyter Notebook 作为一个平台,能够与许多数据科学工具和库(如 Pandas、NumPy、Matplotlib 等)无缝集成。这种整合使得数据科学工作流更加高效,降低了学习和使用的门槛。
Jupyter Notebook 的影响力不仅体现在它作为一个工具的功能上,更在于它如何改变了数据科学、教育和科研的工作方式。通过促进开放共享、增强可视化和交互性,Jupyter Notebook 成为现代数据分析和科学研究中不可或缺的一部分,推动了各个领域的创新与发展。
3、Jupyter Notebook 初体验
学习技术的最好方法就是用技术。不过,在今天的篇幅里,我不可能带你完全学会Jupyter Notebook的所有技巧。我想先带你直接感受一下,使用 Jupyter Notebook 的工作体验。
我们使用 pip 安装 Jupyter Notebook,如下所示
pip install notebook -U -i https://pypi.tuna.tsinghua.edu.cn/simple/
安装完成后,我们可以通过命令行启动 Jupyter Notebook:
jupyter notebook
这将打开一个新的浏览器窗口,显示 Jupyter Notebook 的文件管理界面。
在代码单元格中输入 Python 代码,如下所示,是不是非常之方便!
每一个 Jupyter 的运行单元都包含了 In、Out 的Cell。如图所示,你可以使用 Run 按钮,运行单独的一个Cell。赶紧动手试一试吧,去写一个 Hello Jupyter!吧
4、总结
这篇文章,我为你介绍了Jupyter Notebook,并告诉你它为什么日趋成为 Python 社区的必学技术。这主要是因为它的三大特点:整合所有的资源、交互性编程体验和零成本重现结果。但还是那句话,学习技术必须动手实操。阅读本文后,希望你能自己动手试一试 Jupyter Notebook!
如果你喜欢本文,欢迎点赞,并且关注我们的微信公众号:Python技术极客,我们会持续更新分享 Python 开发编程、数据分析、数据挖掘、AI 人工智能、网络爬虫等技术文章!让大家在Python 技术领域持续精进提升,成为更好的自己!
添加作者微信(coder_0101),拉你进入行业技术交流群,进行技术交流~