AI应用开发之扣子第二课-AI翻译(第1节/共2节)

简介

共分为两节介绍,内容简单易懂,步骤详细,可以避免很多坑,建议直接上手操作(预估30分钟)。

[本篇博客] AI应用开发之扣子第二课学习-AI翻译(第1节/共2节):业务逻辑实现

AI应用开发之扣子第二课-AI翻译(第2节/共2节):用户界面设计

目标

提供用户交互界面,输入要翻译的内容,选择翻译的目标语言进行翻译。业务逻辑通过可视化的流程编排,调用LLM进行语言翻译。本节我们首先完成业务流程的编排,实现业务逻辑,并能进行调试验证。

业务逻辑实现

1.创建应用

依次点击“工作空间” -> "创建" -> "创建应用"。

再创建应用弹出框输入应用名称(应用介绍和图片保持默认亦可),然后点击确认按钮。

2.工作台介绍

如下图,应用开发工作台主要包括业务逻辑用户界面两个子界面,业务逻辑即通过可视化流程编排完成业务逻辑(即本节内容主要的操作界面);用户界面是则可进行界面设计和业务调用。

3.新建工作流

点击工作流右侧的+号,选择“创建工作流”。

在创建工作流弹出框输入工作流名称(例如:translation)和工作流描述(例如:根据用户要求进行翻译。),然后点击确认即可创建。

工作流创建完成后,即可在流程编排界面看到一个“开始”节点和一个“结束”节点。亦可尝试在流程编排界面中即可通过“拖拉拽”方式对流程节点进行操作。

4.编辑“开始”节点

点击“开始”节点,在界面右侧即可编辑节点的详细配置。输入以下两组变量名和变量类型,content (String)、lang(String)。

5.添加“大模型”节点

点击正下方“+添加节点”添加一个大模型节点,这个“大模型”节点也是本业务流程的核心节点哦。

通过连线将“开始”节点和“大模型”节点进行连接。

通过连线将“大模型”节点和“结束”节点进行连接。

6.编辑“大模型”节点

编辑“大模型”节点的输入配置,添加变量名和变量值,content(选择“开始”节点-content)。

完善以下配置

输入:再添加变量名和变量值,lang(选择“开始”节点-lang)。

系统提示词

# 角色
你是一个专业的翻译官,能够准确地将用户输入的内容翻译成目标语言,不进行随意扩写。

## 技能
### 技能 1:翻译文本
1. 当用户提供一段文本时,迅速将其翻译成目标语言。
2. 确保翻译的准确性和流畅性。

## 限制:
- 只进行翻译工作,不回答与翻译无关的问题。
- 严格按照用户要求的目标语言进行翻译,不得擅自更改。

用户提示词:将用户输入的内容{{content}}翻译成目标语言{{lang}}。

输出:修改输出格式为“文本”。

添加完成后如下图。

7.编辑“结束”节点

输出变量:添加变量名和变量值output(大模型-output)。

点击“返回文本”标签按钮,完善以下内容。

输出变量:output,大模型output

回答内容:{{output}}

8.试运行

点击页面正下方的“试运行”按钮,在右侧输入要翻译的文本内容和要翻译的语言。例如:

output:幸会幸会

lang:英语

然后点击右下角“试运行”按钮。

稍等几秒钟后,在“回答内容”下即可看到运行结果。

至此,即完成业务逻辑部分的流程编排设计和开发,通过以下链接查看第2节。

真材实料的实践分享,别忘记给个点赞哦👍。

[本篇博客] AI应用开发之扣子第二课学习-AI翻译(第1节/共2节):业务逻辑实现

AI应用开发之扣子第二课-AI翻译(第2节/共2节):用户界面设计

<think>好的,我需要帮助用户构建一个专为前端开发的AI智能体。首先,根据用户提供的引用,特别是引用[1]和[2],我需要先了解创建智能体的基本流程。然后结合前端开发的具体需求来设计功能和架构。 用户提到参考了快速创建智能体的步骤,所以第一步应该是确定智能体的核心功能。前端开发涉及HTML/CSS/JavaScript,框架如React、Vue,以及调试和优化,所以智能体需要支持这些方面。比如代码补全、错误检查、最佳实践建议等。引用[4]中提到代码补全和理解意图的能力,这点很重要,可能涉及自然语言处理。 接下来是架构设计,引用[2]提到模块化设计,可能需要分成自然语言处理模块、知识库、代码生成引擎等。知识库需要整合前端文档、常见问题,可能需要用向量数据库高效检索。代码生成部分可能需要集成像LLM这样的模型,同时考虑性能优化,如引用[3]提到的系统架构设计能力,确保稳定和扩展性。 然后是指令和引导设计,根据引用[1],需要明确指令,比如理解用户需求、生成代码、解释概念等。引导示例要具体,比如用户询问如何实现响应式布局,智能体能给出示例代码和解释。 测试和迭代也很重要,需要前端开发者参与反馈,持续优化。同时要关注业务痛点,如引用[3]所说,解决开发效率、代码质量等问题。 可能还需要考虑如何集成开发环境,比如VS Code插件,或者作为独立工具。安全方面,确保生成的代码没有漏洞,引用最佳实践。 最后,参考引用中的步骤,逐步创建智能体,确保每个部分符合用户需求,并能够灵活扩展。需要平衡AI能力和系统架构,避免频繁变更,如引用[3]强调的稳定态设计。</think>构建专为前端开发设计的人工智能智能体可分为以下六个步骤: ### 一、需求定义与功能规划 1. **核心能力定位**: - 代码自动补全(支持HTML/CSS/JavaScript及主流框架) - 实时错误检测与修复建议 - 跨浏览器兼容性分析 - 性能优化方案推荐(如Web Vitals指标提升) 2. **进阶功能设计**: ```python # 示例:响应式布局代码生成逻辑 def generate_responsive_layout(breakpoints): return f""" @media (min-width: {breakpoints['md']}px) {{ /* 中屏布局规则 */ }} @media (min-width: {breakpoints['lg']}px) {{ /* 大屏布局规则 */ }} """ ``` ### 二、架构设计 采用分层架构实现功能解耦: $$ \begin{array}{|c|c|} \hline \text{交互层} & \text{CLI/IDE插件/Web界面} \\ \hline \text{逻辑层} & \text{代码分析引擎 \quad 智能推荐引擎} \\ \hline \text{知识层} & \text{框架文档库 \quad 最佳实践库 \quad 漏洞模式库} \\ \hline \end{array} $$ [^2] ### 三、知识库构建 1. 整合MDN Web Docs、W3C标准文档 2. 收集高频问题解决方案(如CSS布局难题) 3. 建立组件库索引(Ant Design、Element UI等) ### 四、模型训练与优化 1. **训练数据准备**: - 开源项目代码(GitHub精选仓库) - Stack Overflow问答对 - CodePen优秀案例 2. **多模态输入支持**: ```javascript // 支持草图转代码功能 sketchRecognizer.on('convert', (svgData) => { const htmlStructure = aiConverter.generateHTML(svgData); return this.applyBestPractice(htmlStructure); }); ``` ### 五、开发环境集成 1. VS Code扩展开发 2. Chrome DevTools插件集成 3. 持续集成流水线对接(如自动生成单元测试) ### 六、测试与迭代 1. 建立前端专项测试集: - 浏览器兼容性矩阵测试 - 性能基准测试 - 可访问性检查(WCAG标准) 2. 用户反馈闭环机制: ![反馈处理流程图](https://via.placeholder.com/400x200?text=用户反馈+分析+模型更新)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值