概述
一种用在图结构数据上的网络结构
图卷积与卷积的思想类似,卷积网络通过卷积核计算对应点的像素及周边点的像素的加权和;而图卷积是通过邻接矩阵计算对应节点的向量与周边节点的向量的加权和。
要计算节点A的Embedding,我们有以下的两条想法:
节点A的Embedding,是它的邻接节点B、C、D的Embedding传播的结果
而节点B、C、D的Embedding,又是由它们各自的邻接节点的Embedding传播的结果。
在构造两层的前提下
- Layer-0
第0层即输入层,为每个节点的初始向量(根据所处领域里特征数据进行构建),不妨称为初始Embedding。
- Layer-1
节点B的Embedding来自它的邻接点A、C的Embedding的传播。
节点C的Embedding来自它的邻接点A、B、C、D的Embedding的传播。
节点D的Embedding来自它的邻接点A的Embedding的传播。
- Layer-2
节点A的Embedding来自它的邻接点B、C、D的Embedding的传播。
图相关矩阵的定义
- 邻接矩阵A
- 度矩阵D
- 拉普拉斯矩阵L
图卷积的通式
H l + 1 = f ( H l , A ) H^{l+1}=f(H^l, A) Hl+1=f(Hl,A)
这里 H 0 = X H^0 = X H0=X为初始图的节点矩阵, X ∈ R N × D X \in R^{N \times D} X∈RN×D,其中N为图中的节点个数,D为每个节点特征向量的维度,A为邻接矩阵,不同的通式实现的不同在于函数 f f f的实现不同
实现一
H l + 1 = σ ( A H l W l ) H^{l+1}=\sigma (AH^lW^l) Hl+1=σ(AHlWl)
W l W^l