最大约数个数算法分析
实验问题描述
正整数x的约数是能整除x的正整数。正整数x的约数个数记为div(x),例如,1,2,5,10都是正整数10的约数,且div(10)=4.设a和b是2个正整数,a<=b,找出a和b当中约数个数最多的数x,输出其约数个数值。
实验目的
本次实验通过利用数论知识,建立素数表,弥补累除法在时间复杂度上的缺陷,同时又结合累除法在小范围内能够计算出最准确的约数个数的特性,
在时间复杂度上获得最大的优化。
实验知识准备过程
累除法的基本思想:计算正整数a的约数个数时,先设置一个统计数变量count,统计a的约数个数,从1开始计算是否能整除a,如果能整除,count
加1,否则1自增,依次累除,直到累除到自身,退出循环。
求解每一个正整数约数个数流程图如下:
累除法的缺点:当两个数的范围在10万到10亿之间,统计所有的数的约数个数所使用的时间是非常庞大的。(经过测试表明:在10万以上的正整数用累除法需要超过1s的计算时间)。
改进方法:根据数论的知识,每一个正整数都可以分解成若干个素数的乘积,例如:12=2*2*3,计算其约数个数的方法如下:a(12)=(1+1)*(1+1)*(1+1&#x

该博客分析了最大约数个数算法,探讨了累除法和利用素数表的优化方法。当正整数范围较大时,通过建立素数表能有效缩短计算时间,但在小范围大数值情况下,累除法更优。文章提供了创建素数表和求约数个数的核心代码,并分析了两种方法的时间复杂度。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



