Feynman1999的博客

halt and catch fire

数论概论读书笔记 41.连分数与佩尔方程

连分数与佩尔方程 通过反复地将小数部分翻到分母上并将整数部分分离,我们可以对任何一个数形成连分数: 连分数在视觉上滑向右下方,将它们写成分数却要花费很多的笔墨和空间,由于所有的分子都是1,故我们要做的就是列出分母,将连分数 简记为[a0,a1,a2,a3,a4,...][a0,a1,...

2018-08-30 23:35:07

阅读数 165

评论数 0

数论概论读书笔记 40.O,多美的一个函数

OOO,多美的一个函数 这个是计算机领域中的核心,就不介绍了

2018-08-30 23:34:29

阅读数 36

评论数 0

数论概论读书笔记 39.斐波那契与线性递归序列

斐波那契与线性递归序列 比内公式 斐波那契序列FnFnF_n用递归公式描述如下: F1=F2=1,Fn=Fn−1+Fn−2,n=3,4,5,...F1=F2=1,Fn=Fn−1+Fn−2,n=3,4,5,... F_1=F_2=1,\quad F_n=F_{n-1}+F_{n-2}\quad...

2018-08-30 23:33:46

阅读数 47

评论数 0

数论概论读书笔记 38.二项式系数与帕斯卡三角形

二项式系数与帕斯卡三角形 二项式展开的系数我们应该已经很熟悉了 (A+B)n=∑k=0nCknAn−kBk(A+B)n=∑k=0nCnkAn−kBk (A+B)^n=\sum_{k=0}^{n}C_{n}^{k}A^{n-k}B^k 帕斯卡三角形(杨辉三角) 如果让二项式系数模ppp...

2018-08-30 23:33:14

阅读数 150

评论数 0

数论概论读书笔记 37.无理数与超越数

无理数与超越数 稍微偏了点理论,,这里不详细记录了 主要是: 2–√2\sqrt{2}的无理性定理 刘维尔不等式 关于ββ\beta的好的逼近的引理 ββ\beta的超越性定理 ...

2018-08-30 23:32:19

阅读数 89

评论数 0

数论概论读书笔记 36.高斯整数与唯一因子分解

高斯整数与唯一因子分解 稍微偏了点理论,数域的扩展,这里不详细记录了 主要是: 高斯整数的唯一分解 高斯整数带余除法 高斯整数公因数性质 高斯素数整除性质 勒让德两平方数之和定理 D1−D3D1−D3D_1-D_3差定理 ...

2018-08-30 23:31:25

阅读数 179

评论数 0

数论概论读书笔记 35.数论与虚数

数论与虚数 稍微偏了点理论,数域的扩展,这里不详细记录了 主要是: 代数学基本定理 高斯单位定理 范数的积性 高斯素数定理 高斯整除引理

2018-08-30 23:21:01

阅读数 48

评论数 0

数论概论读书笔记 34.丢番图逼近与佩尔方程

丢番图逼近与佩尔方程 求解PellPellPell方程,我们的想法是取两个使x2−Dy2x2−Dy2x^2-Dy^2具有相同数值的数对并“将它们相除” 举个例子,取D=13D=13D=13,如果我们知道数对(x1,y1)=(11,3)(x1,y1)=(11,3)(x_1,y_1)=(11,3)...

2018-08-28 23:08:23

阅读数 186

评论数 0

数论概论读书笔记 33.丢番图逼近

丢番图逼近 如何求出佩尔方程x2−Dy2=1x2−Dy2=1x^2-Dy^2=1的一个正整数解x,yx,yx,y?因式分解后得 (x−yD−−√)(x+yD−−√)=1(x−yD)(x+yD)=1 (x-y\sqrt{D})(x+y\sqrt{D})=1 现在有一个问题,x−yD−−√x−...

2018-08-28 23:07:26

阅读数 188

评论数 0

数论概论读书笔记 32.佩尔方程

佩尔方程 PellPellPell方程是指具有形式x2−Dy2=1x2−Dy2=1x^2-Dy^2=1的方程,其中DDD是一个固定的正整数且不是完全平方数 假设可求得PellPellPell方程的一个解x1,y1x1,y1x_1,y_1,则可以利用上一章中对D=2D=2D=2所描述的同样方法来...

2018-08-28 23:06:54

阅读数 64

评论数 0

数论概论读书笔记 31.再论三角平方数

再论三角平方数 定理 (三角平方数定理) 方程x2−2y2=1x2−2y2=1x^2-2y^2=1的每个正整数解都可通过将3+22–√3+223+2\sqrt{2}自乘得到,即解(xk,yk)(xk,yk)(x_k,y_k)可以通过展开下式得到。 xk+yk2–√=(3+22–...

2018-08-28 23:05:51

阅读数 111

评论数 0

数论概论读书笔记 30.方程x^4+y^4=z^4

方程x4+y4=z4x4+y4=z4x^4+y^4=z^4 指数为4的费马大定理 主要用费马降价法来证明,具体看书

2018-08-28 23:05:02

阅读数 69

评论数 0

数论概论读书笔记 29.原根与指标(指标也被称为离散对数(#^.^#))

原根与指标(指标也被称为离散对数(#^.^#)) 原根我们清楚了。 啥是指标呢? 对于模13,2是它的原根,则2x mod 132x mod 132^x\ mod \ 13会取遍[1,12...

2018-08-28 23:02:24

阅读数 185

评论数 0

数论概论读书笔记 28.幂模p与原根

幂模p与原根 如果aaa和ppp互素,费马小定理告诉我们,ap−1≡1 (mod p)ap−1≡1 (mod p)a^{p-1}\equiv 1\ (mod \ p) 辣么这个指数p−1p−...

2018-08-28 23:01:18

阅读数 119

评论数 0

数论概论读书笔记 27.欧拉函数与因数和

欧拉函数与因数和 前面我们在说明完全数的时候,引入了因子和函数σ(x)σ(x)\sigma(x) ,通常σ(x)σ(x)\sigma(x)是大于xxx的。 现在我们做个猜想,不对因子直接求和,而先求欧拉函数再求和。 猜想 设d1,d2,...,drd1,d2,...,drd_1,d_2,...

2018-08-28 23:00:21

阅读数 108

评论数 0

数论概论读书笔记 26.像1,2,3一样简单

像1,2,3一样简单 这一节主要学习数学归纳法,一些方法论 具体可以看书

2018-08-27 18:35:37

阅读数 59

评论数 0

数论概论读书笔记 25.哪些数可表成两个平方数之和

哪些数可表成两个平方数之和 对于一个正整数mmm ,如果mmm每个素因子都可以表示成两个平方数之和,则素因子分解后,用公式 (u2+v2)(A2+B2)=(uA+vB)2+(vA−uB)2(u2+v2)(A2+B2)=(uA+vB)2+(vA−uB)2 (u^2+v^2)(A^2+B^2)=(...

2018-08-27 18:35:16

阅读数 510

评论数 0

数论概论读书笔记 24.哪些素数可表成两个平方数之和

哪些素数可表成两个平方数之和 定理 设ppp是素数,则ppp是两平方数之和的充要条件是p≡1 (mod 4)p≡1 (mod 4)p\equiv 1 \ (mod \ 4) 或p=2p...

2018-08-27 18:34:32

阅读数 312

评论数 0

数论概论读书笔记 23.二次互反律的证明

二次互反律的证明 二次互反定律有三部分。 第一部分告诉我们−1−1-1何时是二次剩余;第二部分告诉我们222何时是二次剩余。 第三部分告诉我们:(精简一下) (pq)(qp)=(−1)p−12⋅q−12(pq)(qp)=(−1)p−12⋅q−12 \left(\frac{p}{q}\rig...

2018-08-27 18:32:16

阅读数 368

评论数 0

数论概论读书笔记 22.二次互反律

二次互反律 对于一个给定的数aaa,我们要确定哪些素数ppp以aaa为二次剩余。在前一章中解决了a=−1a=−1a=-1和a=2a=2a=2时的问题。 这个时候我们可以通过查看p%mp%mp\%m的一些结果得出aaa是否是QRQRQR或NRNRNR,且mmm较小,为444和888 下面要解决...

2018-08-27 18:31:26

阅读数 418

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭