这什么登山啊,下山也能参观啊,求每个点的上升与下降序列就可,取最大的
1283:登山
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 14943 通过数: 5360
【题目描述】
五一到了,ACM队组织大家去登山观光,队员们发现山上一共有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个浏览景点的编号。同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦开始下山,就不再向上走了。队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?
【输入】
第一行:N (2 <= N <= 1000) 景点数;
第二行:N个整数,每个景点的海拔。
【输出】
最多能浏览的景点数。
【输入样例】
8
186 186 150 200 160 130 197 220
【输出样例】
4
#include<bits/stdc++.h>//Writed by Wangzhimin Date:2022.05.07
using namespace std;
int n;
int maxn=1;
int a[1005],up[1005],down[1005];
int main(){
int i,j;
scanf("%d",&n);
for(i=0;i<n;i++){//输入数据
up[i]=1;//上升的
down[i]=1;//下降的
scanf("%d",&a[i]);}
for(i=1;i<n;i++)//求最大上升序列
for(j=0;j<i;j++)
{
if(a[i]>a[j])
up[i]=max(up[i],up[j]+1); // 存入up中
}
for(i=n-1;i>=0;i--)//求最大下降序列
for(j=n-1;j>=i;j--)
if(a[i]>a[j])
down[i]=max(down[i],down[j]+1);//存入down中
for(i=0;i<n;i++)
maxn=max(maxn,up[i]+down[i]);//每个数的上升与下降的和 ,也就是能看的多了1
printf("%d",maxn-1);
}
它的一个变体:1264:【例9.8】合唱队形
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 13629 通过数: 6720
【题目描述】
NN位同学站成一排,音乐老师要请其中的(N−K)(N−K)位同学出列,使得剩下的KK位同学排成合唱队形。
合唱队形是指这样的一种队形:设KK位同学从左到右依次编号为1,2,…,K1,2,…,K,他们的身高分别为T1,T2,…,TKT1,T2,…,TK,则他们的身高满足T1<T2<…<Ti,Ti>Ti+1>…>TK(1≤i≤K)T1<T2<…<Ti,Ti>Ti+1>…>TK(1≤i≤K)。
你的任务是,已知所有NN位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
【输入】
输入的第一行是一个整数N(2≤N≤100)N(2≤N≤100),表示同学的总数。第二行有nn个整数,用空格分隔,第ii个整数Ti(130≤Ti≤230)Ti(130≤Ti≤230)是第ii位同学的身高(厘米)。
【输出】
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
【输入样例】
8
186 186 150 200 160 130 197 220
【输出样例】
4
这篇博客探讨了两个与优化算法相关的问题。第一个问题是关于登山路径的优化,要求在不连续浏览相同海拔景点的前提下,找到能游览最多景点的方案。第二个问题则是合唱队形的排列,需要确定最少需要多少人出列,使得剩余的人能够按照升序排列。这两个问题都涉及到序列的处理和最大值的寻找,可以使用动态规划或贪心策略来解决。
665

被折叠的 条评论
为什么被折叠?



